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Abstract

Side Channel Analysis (SCA) is a method by which an adversary can gather infor-

mation about cryptographic keys by examining the operations on a microprocessor

measuring electromagnetic (EM) emissions or any environment changes the processor

creates during the execution of a cryptographic algorithm.

The purpose of this thesis is to devise methods to increase the difficulty of con-

ducting SCA successfully. This thesis makes use of the open-source soft-core Java

Optimized Processor (JOP) on a Xilinx Virtex 5 ML506 evaluation board which

is used for evaluating the effectiveness of SCA countermeasures in attacks against

cryptographic algorithms. Analysis of SCA in attacks against RSA cryptography im-

plemented on the JOP revealed that secret key information was leaked through the

ALU and multiplier. In examining the processor in attacks against AES cryptogra-

phy, the JOP was found to leak secret key information through memory accesses. To

increase security this thesis proposes the use of several “double hardware” sets that

are dynamically used in such a way to obfuscate the EM emissions to increase security

against SCA attacks. In the case of RSA where the ALU and multiplier leaks SCA

information, the proposed methods removed a correlation of the JOP emissions by

using two separate adders and two separate multipliers. In each case, the adders and

multipliers that were alternated were chosen due to their specific difference in power

signature used while computing the sum or product, thus effectively obfuscating the

bit-group exponentiation functions in Java. In the case of memory correlation and

attacks against AES, the proposed methods normalized the power usage of stored

values, so that all values being stored look the same. This method increased security

by requiring up to 87% more data to successfully attack AES.

iv
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SOFTWARE AND CRITICAL TECHNOLOGY PROTECTION AGAINST

SIDE-CHANNEL ANALYSIS THROUGH DYNAMIC HARDWARE

OBFUSCATION

I. Introduction

The introduction chapter begins with a brief introduction into the history of Side

Channel Analysis (SCA) attacks to set the stage for the motivation of this thesis.

After providing a brief history, this chapter outlines four types of attacks on micro-

processors running cryptographic code, and explain which type of attack SCA falls

under. At this point, the introduction chapter briefly explains what Side Channel

Analysis is and provides a background for how it applies to microcontrollers. At the

end of the chapter is the research problem statement, goals and objectives, proposed

methods, and an outline of what the next four chapters will contain.

1.1 History

Security and cryptography in electronics have played an integral part in society for

several decades. Starting in the 1970s with securing military communication channels

and in the civilian sector with Automated Teller Machines (ATMs), the need for

security has been on the rise since first being sold on the open market. Secure crypto-

processors (microprocessors that process cryptographic algorithms) will often be the

backbone of security networks like in the case of ATMs. Crypto-processors have

also found more widespread use in protecting Secure Socket Layer (SSL) keys and

defending proprietary software and algorithms from theft, both from the outside world

and from employees. Cryptography has become essential to our society. One can find
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crypto-processors in smart cards, decryption keys for pay TV, lottery ticket vending

machines, and mobile-phone systems. For all these crypto-processors, companies

deploy various means of tamper resistance to prevent system tampering, reproduction,

disabling, and reverse-engineering [4].

In the 1970s when crypto-processors were first being used, there was only a need

for simple security measures and tamper-resistant hardware. IBM developed the 3614

ATM system for authenticating customers at ATMs with a bank-given PIN. Although

it did not employ significant anti-tamper protocols, it contained various algorithms to

prevent whole-sale discovery of PINs and other simple methods to prevent employee

tampering [5]. In time, cryptographic systems have become more complicated, and

their security has greatly increased. The IBM 3848 was one of the first crypto-

processors to incorporate an active anti-tamper mechanism. It was enclosed in a

steal case that would zero out the memory when it was opened. Its successor, the

IBM 4758 (see Figures 1 and 2) was a cryptographic engine surrounded by a multilayer

tamper-sensing mesh. The mesh was constantly monitored and would zero out all

key material if tampering was sensed [10].

Figure 1. IBM 4758-001.
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1.2 Motivation

1.2.1 Attack Types.

There are four different classes of attack by which an adversary can attack a

crypto-processor: Local Noninvasive Attacks, Semi-Invasive Attacks, Invasive At-

tacks, and Remote Attacks [4]. Local Noninvasive Attacks involve gaining information

about the device through close observation of the device in operation, watching both

the Electromagnetic (EM) emissions and various environmental information around

the device. Local Noninvasive Attacks was chosen to be the focus of this research be-

cause of it’s importance because it allows any attacker to circumvent cryptographic

algorithms just by having access to the device, and the owner of the crypto sys-

tem may never even know about the attack. Additionally, although not covered by

this thesis, are Semi-Invasive Attacks, Invasive Attacks, and Remote Attacks. Semi-

Invasive Attacks do not require damaging of the passivation layer, and instead use

lasers to ionize transistors and change its state. This method is difficult to use to ex-

tract information due to the variability inherent in trying to ionize specific transistors.

Invasive Attacks involve actual damage to the device and connection or monitoring

of the device interior. Although this is a useful, because it destroys the device there

are large risks associated with this method. Remote Attacks, as in the case of an

Figure 2. An IBM 4758-001 part potted in urethane, showing membrane and interior.
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Application Programming Interface (API) like SSL, are done remotely and interface

with a device in normal operation. These methods are useful, but they deal solely

with programming vulnerabilities and not hardware vulnerabilities [4].

SCA attacks, also known as Local Non-Invasive attacks, are the method by which

an adversary can cleverly deduce information about a cryptographic system by watch-

ing the interaction of a digital circuit with its surrounding environment. The research

is focusing on the attacks because this method allows an adversary to circumvent a

secure cryptoalgorithm just by having physical access to the device without the device

owner ever knowing their crypto system was compromised. The three most important

types of SCA are timing, power-analysis, and EM attacks. In all types, the basic idea

is to determine a cryptographic device’s secret key by measuring its execution time,

power consumption, or electromagnetic field [30].

1.3 Problem Statement

This research addresses the problem of SCA for the cryptographic algorithms,

where a cryptography key can be made known to an adversary through close mon-

itoring of the device in operation. Furthermore, this research aims to reduce the

susceptibility of cryptography systems to SCA attacks.

1.4 Goals and Objectives

The goal of this research is to propose new methods to protect cryptographic

information and critical technology by making dynamic changes to the underlying

architecture of a microprocessor. The objectives of this research are to implement

SCA vulnerable algorithms, compromise them, and then show an increase in the

security of the circuit after incorporation of the proposed secure hardware.
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1.5 Proposed Protection Methods

The proposed methods of this research are derived from the hypothesis that by

adding multiple hardware units that are functionally the same but structurally differ-

ent, the EM emissions off the microprocessor can be varied increasing the difficulty

to conduct SCA successfully. There are two proposed methods to protect the crypto-

graphic algorithm Rivest, Shamir, and Adleman (RSA) and two proposed methods to

protect the cryptographic algorithm Advanced Encryption Standard (AES). To pro-

tect RSA, the two proposed methods are a Double Adder and a Dual Asynchronous

In-Line Multiplexed Out/inputs Multiplier (DAILMOM). These two proposed coun-

termeasures obfuscate RSA where the algorithm is most vulnerable to SCA attacks,

and are used to override the current addition and multiplication functions on the

microprocessor. The Double Adder increases the security by alternating the power

signature of the add operation each time an addition is called. This is done by using a

Carry Look Ahead adder whose power signature to add numbers is front-loaded, and

the Ripple Carry Adder whose power signature is evenly distributed during addition.

Alternating which adder is used allows for one add to have a front-loaded or an even

distribution during addition, and then the next addition operation, regardless of the

values being added, will have the other power signature. The DAILMOM uses two

multipliers and it’s obfuscation is due to the result of the second multiplier being

fed arbitrary data that will shape the power signature a different way each time.

This overlay of noise whose signature can be manipulated allows for two subsequent

multiply operations to have the same data but totally different power signatures. To

protect AES, the two proposed methods are a Double Stack and a Double RAM.

These two proposed countermeasures aim to protect AES where it is most vulnerable

to SCA attacks by changing the way the microprocessor stores values on the stack

during the execution stage and how values are saved to the Random Access Memory
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(RAM) during the writeback of variables. This increase in security is due to when

a variable is being saved, it is split into two variables, where each resulting variable

being saved always has the same number of logic ‘1’s and ‘0’s. This power normaliza-

tion allows for the data to always have the same usage, decreasing the power changes

in the circuit that SCA looks for.

1.6 Research Methodology

Testing of the proposed methods will be done by implementing both RSA and AES

on a microprocessor being implemented on an FPGA. First, the two cryptographic

systems will be evaluated for their initial security against SCA. After a baseline secu-

rity is established, the microprocessor security will be reevaluated with the proposed

methods and be recompared to the original microprocessor.

1.7 Organization

Chapter 2 provides background information on current research with SCA and

protection against SCA. Chapter 3 details the approach for implementation and eval-

uation of the stated objectives. Chapter 4 details the results of the experiments and

any adjustments required to facilitate the thesis goals. Chapter 5 evaluates the work

undertaken and reviews the major contributions of this thesis, which includes future

directions for extending this research.

6
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II. Related Work

Chapter 2 begins by explaining Differential and Correlation Power Analysis. Chap-

ter 2 then explains the current research in preventing SCA attacks separated into

algorithmic countermeasures and circuit level countermeasures. After this, the the-

sis examines the cryptography algorithms Rivest, Shamir, and Adleman (RSA) and

Advanced Encryption Standard (AES) and then goes through the JOP in detail.

2.1 Differential and Correlation Power Analysis

Beginning in June of 1998 with Kocher’s initial publication of the susceptibility

of cryptosystems to side channel analysis [13] and his follow up article [14], much

research has been done to both protect and exploit circuits. Although SCA attacks

have become more sophisticated in the last decade, the basic idea of SCA is not

new. For example, military circles were aware of the need for EM security since the

discovery of crosstalk between telegraph lines of the British army expedition to the

Nile and Suakin in 1884-1885. Even in World War I, telephones on the front lines could

be eavesdropped by the opposing side at distances of hundreds of yards. Nowadays,

“Tempest” military standards help to govern electronic emissions for military devices

and for Electromagnetic Security (EMSEC) [1].

2.1.1 Background.

The basic premise of SCA attacks stem from the reality that the switching activity

of Complementary Metal-Oxide Semiconductor (CMOS) circuits leak information.

When a CMOS circuit charges to a ‘1’ or discharges to a ‘0’, a change in the electric

potential creates a change in the electric field which is measurable outside the chip.

Generally the quantization of the energy for a given value is derived from either the
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Hamming Weight (HW) or the Hamming Distance (HD). In the case of the HW, the

value of a given data is the summation of the bits that are in a ‘non zero’ state. That

is to say that the HW of 0x50 (0b01010000) is two, and the HW of 0x03 (0b00000011)

is also two while the HW of 0xFF (0b11111111) is eight. The HD however is a measure

of the change of a value, measuring the number of bits that change from the previous

state to the current state. For example the hamming distance between 0x50 and

0x03 is 4, while the hamming distance between 0x50 and 0xFF is 6. The Hamming

Weight can be thought of as the Hamming Distance between the zero value 0x00 and

any other value. Commonly, the model used to describe the information leakage off

a chip is C(t)(a,b) = λHW (a ⊗ b) + βt, where (a ⊗ b) is the XOR of a and b, HW is

the Hamming Weight function, λ is the power consumption used by the circuit when

inverting the bit, and βt is noise [6].

2.1.2 SCA Attack types.

From monitoring the execution time, power consumption and the electric field

from a microprocessor, the three main types of SCA attacks used to find secret key

information are: Simple Power Analysis (SPA), Differential Power Analysis (DPA),

and Second Order Differential Power Analysis (SODPA) [28]. A SPA attack involves

directly observing a system’s power consumption. This attack is particularly useful

when an adversary only has the ability to capture only one encryption because SPA

can be done on a single trace. If the attacker knows generally what the processor

is doing, an attacker can visually analyze the trace and extract information. This

attack is also particularly useful in RSA, where binary exponentiation exacerbates

visual timing differences that depend on the key in the power trace.

DPA is significantly more powerful than SPA, but is more complicated and requires

many more traces. For DPA to work, one needs to know either the plaintext or

8
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ciphertext of each trace. The known plain/ciphertext of each trace is then used with

hypothesis testing for the first bit of the key. From this hypothesis and using the

knowledge of the plain text for each trace, all of the traces can be separated into two

pools: if the resulting bit of the plain text after encryption is a ‘1’ or a ‘0’ given the

key hypothesis [20]. With these two pools, statistical analysis can be conducted to

search for correlating power biases in the comparisons that will arise for correct key

guesses. From these power biases, the correct key can be derived.

Lastly, SODPA is the most powerful SCA tool, but also the most complicated.

SODPA is a method employed to overcome the masking countermeasure employed by

some SCA defenses. In masking, a defender splits a value Z into d shares M1 � ...�Md

such that M1 � ...�Md=Z and where � is a function like the XOR or modular addition

[23]. A masking operation is said to be (d-1)th-order depending on the number of

shares d. When a (d-1)th order masking is used, a dth-order DPA can be performed

by combining the leakage signals at time intervals L(t1), ... , L(td) resulting from the

manipulation of the d shares that make up the value Z. The downside to this attack

is that noise effects in the leakage current readings increases exponentially with the

number of d shares. Currently there are no designs of higher order masking that are

efficient and secure beyond the second order, as such only second order masking is

generally used in the protection of block ciphers.

2.1.3 Differential Power Analysis vs Correlation Power Analysis.

There are namely two methods referred to as Differential Power Analysis, the

original DPA (also known as the Difference in Means Method) and Correlation Power

Analysis (CPA) [11]. The original DPA was the first method used by Kocher in his

attack of the cryptographic system. In this attack, one feeds a known plain text

to the cryptographic system (or keeps track of the cipher text and works backward

9
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from the traces instead) and records the power trace that corresponds to that data.

In order for this attack to work, one needs many traces with many different known

plain texts. Then the attacker works down the bits of the key, one by one, making

a hypothesis guess as to if that bit is set or not individually. Having done this, the

attacker separates all of the traces into two groups, those who the key guess would

result in them having ‘0’ for the given value after encryption, and those that the

key guess would result in them having a ‘1’ after encryption. Once the traces have

been separated, the attacker averages all the traces for each group, and then find the

difference of the means. If your key guess was correct, then the difference of means

trace results in a power spike. If the key guess was incorrect, then the resulting

difference trace would not contain any spikes. This method of separating traces into

bit groups, finding the average trace, and then finding the difference in means can be

seen in Figure 3 [25].

Figure 3. Differential Power Analysis

Though often bundled up with traditional Differential Power Analysis under the

name of DPA, Correlation Power Analysis is a newer method for power analysis and

computes keys in a different fashion. In the case of CPA, linear algebraic methods

are used to find keys in the traces. Given many traces with many plain texts, the

correlation coefficient is a measure of the linear relationship of the plain text with

the trace value at a given instant in time. The correlation power trace is derived by

using Pearson’s coefficient of correlation on the ‘data’ values and the ‘trace’ values for

each time instant, and then stepping in time down the trace and finding the resulting

10
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coefficient of correlation for each time instant. Figure 4 shows an example of CPA

being used on four traces where the data (FF, DD, 09, and 8B) is being correlated

with the values in the first red box to create the first value of the 8-bit correlation.

The subsequent red boxes attempt to show the correlation being done at every time

instant to create the full 8-bit correlation that is examined for spikes [11] [25].

Figure 4. Correlation Power Analysis

In practice, Correlation Power Analysis’ use of linear algebra actually has a signif-

icant reduction in the effect of random noise in power traces. So using CPA instead

of traditional DPA results in the correct key with fewer traces. For the remainder

of this document, when DPA is used on a given sample set, CPA is the method of

DPA employed unless otherwise stated. As explained in Chapter 3, these methods of

power analysis attacks are accomplished on the data using the third party software,

Riscure Inspector.

2.2 Algorithmic Countermeasures

As mentioned earlier, SCA attacks fit into three categories - Simple Power Anal-

ysis, Differential Power Analysis, and Second Order Differential Power Analysis. De-

fenses against these attacks fit into two high-level categories: algorithmic countermea-

sures and circuit-level countermeasures. Countermeasures can be further classified

based on the method by which they try to decouple the power consumption with the

11
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data being processed, these are: masking countermeasures and elimination (hiding)

countermeasures [28].

2.2.1 Masking Techniques.

Algorithmic countermeasures try to uncorrelated the output of algorithms with

the secret key. Masking at the algorithmic level has the key notion of minimizing the

correlation between intermediate values and the secret key [7]. One simple method to

accomplish this is to introduce noise into the power consumption measurements. This

method is overcome by the introduction of more samples. In theory if the variance of

the noise is great, then the necessary sample size might be infeasible, but this method

is still surmountable by increasing the number of samples [15].

Another option to the end of masking power traces at the algorithmic level is

the introduction of Random Process Interrupts (RPI) during the cryptographic al-

gorithm. This approach can be done by interleaving random dummy commands or

“No Operation’ (NoOp commands)’ randomly throughout the code thus masking the

actual execution sequence. Thus RPIs cause time shifts in the corresponding cryp-

tographic operations and thus mismatch amongst them. This mismatch reduces the

size of the correct differential spikes by spreading them over several clock cycles in

different traces. It also causes an increase in the number of clock cycles needed for

analysis proportional to the squared number of the clock cycle variation that occurs.

That is to say, if k is the number of clock cycles that the event varies, then the number

of necessary traces is proportional to k2. Although this increase in the required clock

cycles can make a SCA attack infeasible, it does not prevent an attack because the

information is still being leaked. In the case of RPIs, the correlation spikes can be

reconstructed though by integrating the signal over the number of consecutive clock

cycles equal to the greatest number variance in the clock cycles [8]. This method to
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overcome RPIs is called the sliding window attack. For this attack, several traces are

integrated together and then compared against other integrated traces for the power

spikes [17].

Another method for algorithmic masking is to split the key into two halves (dupli-

cation method) [9] or more generally, by splitting the key into k shares [7]. However,

this method of masking can be circumvented through the use of higher-order differ-

ential power analysis. By combing the leakage signals at time intervals L(t1), ... ,

L(td) that are the resulting leakages from the manipulation of the d shares that make

up the value Z, the differential power spike for correct key guesses can be reproduced

[23][19][21].

2.2.2 Elimination Techniques.

Elimination is the other method that can be used to confound power variation.

The key notion of elimination (hiding) is to remove power variation information from

the attacker. Where masking seeks to decouple the power variation from the data

being processed, elimination seeks to eliminate it. Four ways that people employ to

use elimination are: [15]

1 - Using constant execution path code

2 - Choosing operations that leak less information in their power consumption

3 - Balancing hamming weights and state transitions

4 - By physically shielding the device

2.3 Circuit Level Countermeasures

2.3.1 Masking Techniques.

Circuit level countermeasures to remove the correlation between a circuit’s power

characteristics and the data being processed. In CMOS circuitry, power is consumed
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by the system when an output transitions from a logical 0 to a 1. These power spikes

are what an adversary uses in power traces to gleam information. Many masking

techniques at the circuit level introduce random power consumptions which are akin

to noise. Examples include Random Switching Logic (RSL) [29], masking-AND [34],

and Dynamic Voltage and Frequency Switching (DVFS) [35]. The RSL countermea-

sure adds in random logic paths, masking-AND masks every output with random

inputs, and DVFS randomly modulates voltage and switching frequency to introduce

randomness into power traces. All of these circuit level masking techniques, however,

are still susceptible to glitches. Glitches are the transitions at the output of a gate

that occur before the gate switches to the correct output. Because glitches add to the

power signature, they are susceptible to leak information, especially when they leak

key information before the correct mask is applied [18][3]. RSL uses random input

and enable control signals to randomize the power signature and is thus able to avoid

the information leakage posed by glitching, but the enable signals need to be carefully

timed [3].

A more advanced method for circuit level masking however is Masked Dual-Rail

Pre-charge Logic (MDPL) [22]. MDPL uses both masking and dual rail precharged

logic to obfuscate the power signature. The masked values are represented as bm =

b + m, where b is the actual value and m is the applied mask. Furthermore, the

mask, m, is a bit generated randomly and updated every clock cycle. The Dual-

Rail Precharge (DRP) logic addresses the glitches that occur in CMOS circuitry by

precharging all signals to 0 before every evaluation phase and thereby alternating

between the precharge and evaluation states. MDPL also makes use of majority

function gates which only change the output once during the precharge phase and

once during the evaluation phase. An example of the MDPL AND gate is shown in

Figure 5.
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The majority function gate goes high when most of the inputs are high, and goes

low when most of the inputs are low. The six dual-rail inputs can be seen in the

picture as well: am, bm, cm, a′m, b′m, and c′m. The dual rail logic claims to have equal

capacitances and thus prevents glitching by evaluating both the logic value and its

inverse simultaneously. Although the precharge logic aims to prevent glitching, it also

has the added benefit of helping to smooth out power use [22]. However, with all these

advances, [16] shows that MDPL is susceptible to leakage due to early propagation,

which is when a gate calculates the output before all the inputs arrive. Further, [26]

shows loading balances that occur due to a lack of routing constraints which can be

used to expose a DES key. The mask bit is also fairly easy to remove by examining the

trace and seeing if the power trace is above or below the average power consumption.

Furthermore as an efficiency note, the necessary power for MDPL increases by more

than double due to the dual rail logic and the added mask circuitry and precharging.

2.3.2 Elimination Techniques.

Elimination, as mentioned earlier, attempts to eliminate power variation by mak-

ing the power consumption of the device constant for any input data. Without any

variation in power due to the key, no information is leaked through side channels.

Constant power can be achieved by ensuring that a constant power is consumed ev-

ery clock cycle. This is done in the Dynamic and Differential Logic (DDL) style by

ensuring that one of the outputs is charged for any input, be it the output or the

complimented output, and it ensures that one output transition occurs in every clock

cycle. More specifically, DDL logic is split into a precharge state, where all outputs

are at zero, and then an evaluation phase, where at least one output or its compliment

goes high [31]. Sense Amplifier Based Logic is an implementation of DDL that uses a

dynamic-CMOS logic implementation. Using this implementation of DDL, however,
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causes Amplifier Based Logic to have to deal with the effects of cascading circuits

and signal integrity issues that derogate the signal and make it inefficient [31].

Wave Dynamic and Differential Logic (WDDL) is another implementation of DDL.

WDDL uses a static CMOS implementation of AND and OR gates. Each gate in the

WDDL has both the gate with the inputs and a complimentary gate with the inverse

of the inputs. For example, Figure 6 shows a WDDL and gate with its logic table

where “Prch” is the precharge state that the gate goes into between evaluations, and

the “Eval” state is the evaluation of the gate given the inputs shown in the figure.

With the shrinking capacitor size, however, it can be seen that the signal propa-

gation capacitance is actually greater than the transistor capacitance so to be truly

effective at stopping SCA the output lines need to be placed on the board side by

side with the same length of wire. Also with this logic, early propagation can be a

problem which needs to be addressed. The WDDL also uses only positive gates, so

that the precharge phase can propagate through all gates, which makes logic opti-

mizing difficult. Lastly, to contain all the logic and its compliment would require a

cryptosystem implementing WDDL to have at least twice the area and require twice

the power as a cryptosystem that does not implement WDDL [32]

Reduced Complementary Dynamic Differential Logic (RCDDL) is another imple-

mentation of DDL. Like WDDL, RCDDL has both the logic and its complimentary

logic, but RCDDL seeks to optimize its logic while keeping its security features. To

optimize, RCDDL reuses logic gates in the uncomplimented logic while ensuring that

a constant capacitance is charged. Unlike WDDL, RCDDL allows the both positive

logic (AND/OR) and negative logic (NAND/NOR). The RCDDL gate structure can

be seen in Figure 7.

As can be seen in Figure 7, the uncomplimented output, Y, is calculated through

Segments I and II. Segments I, III, and IV collectively form the complimented out-
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Figure 5. MDPL AND Gate [28]

Figure 6. WDDL AND gate and truth table [28]
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put, Y’. The segments are created through using the Sum Of Products (SOP) where

Segment I is all but the last step, which is completed in Segment II. Segment III

generates the precharge signal which sets IV to drive the complimented output to ‘0’.

This is done locally in every gate, which does away with the need for a precharge

phase thus allowing for RCDDL to use negative logic. Because of the reuse of gates

with RCDDL, the size and power consumption of RCDDL are smaller than that of

WDDL. Additionally, it has been shown that RCDDL has less power variation than

WDDL thus making it more secure. Unfortunately, as compared to WDDL, due to

the size of the individual RCDDL cells, there is a delay penalty. Early propagation

effects also affect RCDDL so there is that added vulnerability. [24]

Although all DDL elimination strategies reduce the power consumption variation,

in reality, all methods still have minor power variations. The goal of circuit-level

elimination SCA countermeasures is to further minimize with the hope of eventually

eliminating these variations [28].

Lastly, in his article [12], Slaman obfuscated EM emissions off the FPGA by

changing Java bytecodes. This method had the added benefit of changing both the

power and time correlation during code execution. The Java bytecode method of

obfuscation however differs from this thesis in that it was all software implemented

with no changes to the hardware of the JOP, and was thus written for the Java Virtual

Machine (JVM) to protect java code running on the JOP. This thesis however proposes

lower level changes by changing the actual hardware, allowing for a wider range of

software security.

2.4 Cryptographic Algorithms

Two of the most common algorithms used in the military and in the civilian sector

for encryption are the RSA algorithm developed in 1977 and the AES algorithm

18



www.manaraa.com

developed in 2001. In order to better protect the crypto-processor running RSA or

AES against SCA attacks, this thesis employs the methods of both masking and

elimination techniques to obfuscate the Arithmetic Logic Unit (ALU), the multiplier,

and the memory to protect the circuit from EM and power SCA. Before explaining the

proposed methods, it is important to first explain in greater detail both cryptography

algorithms to better show why certain methods were chosen for obfuscation.

2.4.1 AES.

The AES algorithm is a symmetric key crypto-algorithm, using the same secret

key to do both the encryption and the decryption of data. The AES flow can be seen

in Figure 8.

As can be seen in Figure 8, there are three main segments of the AES algorithm,

the initial round, the nine rounds in between, and then the final round. Each of

these three segments are made up by the four functions: SubBytes, ShiftRows, Mix-

Columns, and AddRoundKey. SubBytes uses a simple substitution algorithm and

takes the current text hex values and substitutes the values with known quantities

in a “substitution box” (also known as the Sbox). ShiftRows is a function where

the data, oriented in a 4x4 matrix, has each of the four rows shifted where the shift

amount is different for each row. MixColumns is the function where each column

is treated as a four term polynomial and is multiplied modulo x4 + 1 with a fixed

polynomial a(x), given by a(x) = {03}x3+{01}x2+{01}x+{02} effectively resulting

in the multiplication shown in Figure 9.

Finally, AddRoundKey is the function where the key, modified slightly for each

round, is added to the current text [2].

Of those four functions, only AddRoundkey actually manipulates the data based

on key, which makes AddRoundkey the important target for key extraction. Each
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Figure 7. RCDDL Gate Structure [28]

Figure 8. AES flow diagram[36]
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time the function AddRoundKey is called, a different permutation of the key is used,

with the first call to AddRoundKey using the original key, and each subsequent

call to AddRoundKey using a different version of the key. The second function of

importance is SubBytes. SubBytes is a simple substitution algorithm where by the

current state of the plain text is used to find the corresponding substitution value in

the Sbox. The Sbox is predefined and can be seen in Figure 10. For the SubBytes

function, each byte in the current text is evaluated such that the first nibble of the

byte corresponds to the row and the second nibble of the byte corresponds to the

column. For example, if the byte being considered is 0x19 then the value 0xd4 will

be substituted in for the value 0x19. After these first two functions run is when

the data is most susceptible to SCA attacks because the known plain text was just

XORed by the key and the resulting state undergoes the Sbox substitution where

many transistor transactions occur, thus leaking significant information of the current

state of the plain text. Therefore, directly after the first SubBytes is the location of

the SCA attacks on AES for this thesis.

2.4.2 RSA.

RSA is used in many areas, like in the area of e-commerce where RSA is one of the

algorithms used to ensure safe transmissions of data over the internet. For example,

a web site like Amazon is able to publish a public key for users all over the world to

use but keeps a private key secret. In this manner users are able to encrypt sensitive
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information like credit card numbers and pass the information over the internet to

Amazon without fear that an eavesdropper would be able to decrypt the information.

RSA is known as an asymmetric key algorithm because there are two keys, one

private and one public. This cryptography scheme with a public and a private key

is made secure through difficulty of factoring numbers, but this leaves RSA only

computationally secure but not provably secure. The computational security of RSA

also means that the security of current RSA keys is based on the inherent difficulty in

factoring a public key to get the private key. In theory, the modulus and the exponent

(the public key, seen in Table 1 as e and n) has all the information needed to find

the private exponent, but due to the difficulty in factoring a very large number, it

is normally infeasible to find the private key using the public key. Keys for RSA

are chosen based on them being infeasibly large to crack in a polynomial bounded

computational time. As technology increases in complexity and power, likewise the

key length of “secure” RSA implementations must also increase.

RSA is an asymmetric algorithm and is very different to attack than AES. The

algorithm used by RSA can be seen in Table 1. As previously mentioned, the key

to the secure mathematics behind RSA is based in prime number theory, enabled by

the two primes p and q as seen in Table 1. The important step for consideration

though for gaining the key in a SCA attack is the fifth step, where c ≡ me(mod n).

Unlike AES, RSA is completed with one basic function, a power mod function, where

a large number can efficiently be raised to a large power and mod by another large

number. When implementing RSA, there are namely three methods by which this is

done, binary exponentiation, the Chinese Remainder Theorem (CRT), and bit group

exponentiation[25]. Binary exponentiation is the simplest method to efficiently raise

a large number to another large number. As can be seen in the algorithm shown in

Table 2, the algorithm goes through each bit of the exponent and squares the current
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Table 1. RSA algorithm[33]

The RSA Algorithm
1. Bob chooses secret primes p and q and computes n = pq.
2. Bob chooses e with gcd(e, (p− 1)(q − 1)) = 1.
3. Bob computes d with de ≡ 1(mod(p− 1)(q − 1)).
4. Bob makes n and e public, and keeps p, q, d secret.
5. Alice encrypts m as c ≡ me(mod n) and sends c to Bob.
6. Bob decrypts by computing m ≡ cd(mod n).

Table 2. Binary Exponentiation[25]

Binary Exponentiation Algorithm for M = cd

(di is exponent bits (0 ≤ i ≤ t))
1. M = 1

2. For i from t down to 0:
3. M = M ∗M
4. If di = 1, then M := M ∗ C

number and if the key is a ‘1’, then it also multiplies it by the base number. Using the

method outlined in Table 2 yields traces that easily show to the naked eye (Simple

Power Analysis) what the value is of the exponent. Although in cryptographic circuits,

this algorithm is easily adapted to obfuscate the key value by always doing a square

or a multiply. For example, squaring the value M and storing the result as variable X,

and then multiply X by the base value C and store that in variable Y. Then if the bit

is a one, use Y in the next stage, if it is a zero, then use X. This causes the attacker

to need to use more advanced methods to discover the key if binary exponentiation

is use.

The second method by which the RSA algorithm can be efficiently implemented

is using the CRT, as can be seen in Table 3. In the case of using the CRT for

the exponentiation algorithm, simple power analysis is not an option, although this

method is still vulnerable to SCA attacks. Because CRT is highly efficient and quick,
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Table 3. Chinese Remainder Theorem[25]

Chinese Remainder Theorem Algorithm for M = cd

1. Precompute
dp = d mod (p-1)
dq = d mod (q-1)
K = p-1 mod q
2. Reduction
Cp = C mod p
Cq = C mod q
3. Exponentiation
Mp = Cp
dp mod p
Mq = Cq
dq mod q
4. Recombination
M = ( ( (Mq - Mp)*K ) mod q ) * p + Mp

it is highly appealing to people implementing RSA. In terms of attacking CRT, the

attacker is actually trying to find the prime number that created the public key in

the first place. To implement CRT, one uses the original prime number p and q in

its evaluation, so the attack of the CRT is centered around finding the value of one

of the primes. In the case of the algorithm below, in the final recombination step,

the prime number p is isolated enough such that through the correlation of many

traces, one can find p. Once the attacker has found p, he needs only to find q using

the public modulus n and then he can use the public key to derive the private key

mathematically.

The final method to implement RSA is bitgroup exponentiation. This case is

similar to binary exponentiation, except that the exponent is broken into k-sized

groups of bits and evaluated k bits at a time. For example, in a case of bitgroup

exponentiation with a bitgroup of three, the resulting operations can be seen in Table

4. Prior to evaluation of the exponents, the values of c1, c3, c5 and c7 are evaluated
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Table 4. Bit Group Multipliers for a bit grouping of 3, M = cd

Exponent Bit Group Resulting Operation
0 square
1 square, multiply by c1

10 square, multiply by c1, square
11 square, square, multiply by n3

100 square, multiply by c1, square, square
101 square, square, square, multiply by c5

110 square, square, multiply by c3, square
111 square, square, square, multiply by c7

to save time and then used when needed. A three digit window then slides down the

exponent and actions done to the value are dictated by the window.

Since RSA uses large numbers, the Java implementation of RSA utilizes a class

called “BigInteger.” In this class, the evaluation of M = cdmodn is accomplished by

calling the function “modpow(exp, mod)”. This function then looks at the modu-

lus and if it is odd, it calls the function “oddmodpow(exp,mod)” to evaluate M =

cdmod n. The function Oddmodpow impliments bit-group exponentiation with a big

group size of three. In the case of RSA, because the value of the modulus is the

product of two prime numbers, it will always be odd so when attacking the RSA

implementation on the JOP, methods to crack the bit-group exponentiation are used

to find the key. Interestingly however, if the modulus is even, Java splits the modulus

into an “even” and an “odd” part using the CRT to break them apart, and then eval-

uates the “even” number with binary exponentiation, and evaluates the “odd” part

with oddmodpow. Both “modpow” and “oddmodpow” are provided in Appendix A.

2.5 Java Optimized Processor

The main purpose of this thesis is to propose specific changes to the architecture

of a microprocessor to make code running on the microprocessor more secure. Thus,
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cryptography code that was previously vulnerable to side channel analysis attacks can

now be made more secure without changing the code but by using a modified version

of the architecture. For the purposes of testing the security of the proposed thesis

countermeasures, the Java Optimized Processor (JOP) was selected to implement the

changes in the architecture and test the resulting security increases. The JOP is an

open source soft-core microprocessor created by Martin Schoeberl and is published

online at under the Gnu’s Not Unix (GNU) General Public License, version 3. The

JOP was chosen to be the vehicle for testing because it is a flexible, open source

project. This allows easy changes to the architecture in the specification files, allowing

these countermeasures to be implemented. The other reason the JOP was selected

was that it is a soft-core processor that is able to be compiled and downloaded onto

a Field Programmable Gate Array (FPGA). The use of an FPGA as opposed to an

Application-Specific Integrated Circuit (ASIC) allows the flexibility needed to test

implementations of these designs quickly and efficiently. The JOP main hardware

open source core can be acquired online at [27].

The JOP is a 32-bit microcontroller that has been created by Martin Schoeberl

as part of the PhD program at Vienna University of Technology, Austria. It was

originally created to be an efficient method to implement Java on an FPGA, and

has found a niche in many production level programs requiring the use of Java code

outside of academia. The JOP is a stack based computer that has its own instruction

set called “microcode.” The JVM is a Complex Instruction Set Computer (CISC) like

architecture which is turned into a Reduced Instruction Set Computer (RISC) like

architecture on the JOP. The JOP block diagram can be seen in Figure 11. As can

be seen from the JOP block diagram, the typical implementation of the JOP contains

the JOP core, a memory interface and a number of I/O devices. The processor core

contains the stages microcode fetch, decode, and execute with the additional bytecode
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fetch which is a translation stage. The extension module provides the link between

the processor core, and the memory and I/O modules. It also controls data read and

write. The memory interface provides a connection between the main memory and

the processor core. It also contains the method cache. The control bit synchronizes

the modules as the memory access is done concurrently with the JOP core instruction

execution.

The first stage in the JOP core is the Bytecode Fetch stage. This stage is not

actually part of the “JOP pipeline” and functions as the method where by Java byte-

code (the JVM instructions) are translated into corresponding microcode addresses.

After this translation stage, the bytecode equivalent instruction is then passed to the

Fetch stage. This stage then acts like a regular Instruction Fetch stage in a pipelined

microprocessor. Once the microcode has been fetched, it is then passed to the Decode

stage which also generates the local address for the stack cache. The third and final

stage of the JOP pipeline is the Execute

Stack stage. The last stage contains the circuitry to perform operations on the stack,

and also contains what is normally considered the Write Back stage in a micropro-

cessor.

The JOP is situated as a series of Very high speed integrated circuit Hardware

Description Language (VHDL) files that get compiled to a .bit file by Xilinx ISE

and then loaded onto the FPGA via a Joint Test Action Group (JTAG) interface

using Xilinx iMPACT. Separately to the compilation of the JOP architecture, the

Java program is compiled by the Java Development Kit (JDK) provided by Sun

microsystems into the bytecode instructions of the JVM.
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Figure 10. SBox[2]

Figure 11. JOP Block Diagram
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III. Methodology

The methodology chapter first explains the proposed countermeasures to protect

the JOP running the two cryptography algorithms. Then this chapter covers the

overview of the set up of the experiments. Finally, an explanation of the experimental

test setup and description of experimental test procedures is provided.

3.1 Proposed Countermeasures against RSA

In the protection of circuits running RSA cryptography, protection methods are

based off the knowledge that processor mathematical operations have a unique power

signature [4]. The proposed hypothesis is that through the addition of duplicate

hardware that have the same functionality but are structurally different, the correla-

tion between the processed data and the EM emissions can be significantly reduced.

Where normal methods to add EM ”noise” to systems overlay the noise over the

”useful” EM information, this thesis explores the idea that the EM ”noise” created

not only changes the EM emissions, but also completely removes the previous ”use-

ful information” dynamically changing which hardware is used. The two methods

used to test this hypothesis are to have two functional units of differing signatures

to be separated in time (alternate use) or at the same time but separated with data

(both execute at the same time, one is sent the correct data and one is sent the

incorrect data). To test the time differential nature of separate functional units, the

add operation was modified to have two different architectures, a Ripple Carry Adder

(RCA) and a Carry Look Ahead (CLA), and the JOP alternates which adder is used

each time an addition operation was executed (referred to as the Double Adder). The

RCA uses an even distribution of power to add two numbers due to its many cascaded

stages, while the CLA uses a front loaded distribution of power to add two numbers
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due to its look-ahead nature. Using these two add operations, regardless of the data

being added, a given add operation will either be front loaded or evenly distributed

in power, and the subsequent add operation will have the other distribution of power.

To test the data differential nature of separate functional units, the multiply opera-

tion was modified to have two “asynchronous” Booth multipliers, referred to as the

DAILMOM, where one multiplier was supplied the correct operands while the other

multiplier was fed arbitrary data. The arbitrary data being fed to the multiplier was

selected to give the multiplication operation a front loaded appearance, a back loaded

appearance, split on either side in time, or a middle loaded appearance. This loading

factor changes for each multiplication operation

3.1.1 Dual “Asynchronous” In-Line Multiplexed Out/inputs Multi-

plier (DAILMOM).

The basic JOP before any modification uses an external synchronous multiply unit.

The original JOP multiply unit is shown in Figure 12, it requires 32-bits for each of

the two inputs that are fed directly into the multiplier, then the multiplier is clocked

until the number of clock cycles necessary to multiply the two numbers is complete.

The resulting 64-bit value is returned to the program (although in actuality, only the

lower 32-bits is returned, to get the higher 32-bits requires a long int multiplication).

To make the multiplier unit more hardened against SCA, the multiplier that came

with the fresh install of the JOP was replaced (over-ridden) with the DAILMOM.

First, the basic underlying structure of the multiplier was changed from a synchronous

multiplier to an “asynchronous” Booth multiplier. The term “asynchronous” is being

used here loosely to describe that there is not clock signal to control the flow inside

the Booth multiplier, so the multiplier uses purely combinational logic. Then, the

multiplier unit is doubled so that there is the circuitry for two multipliers, basically
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Figure 12. Original synchronous JOP hardware multiply unit
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allowing for two 32-bit numbers to be multiplied simultaneously. One of the multi-

pliers is used for the actual input values of A and B, while the other multiplier acts

to confound the power signature. The second multiply unit is the exact same, and

runs in parallel with the multiply unit that is actually producing the value. A fea-

ture of this design is that the user of this multiply unit can manipulate the shape of

the power signature of a given multiply operation by changing the values of A2 and

B2. Furthermore to confound the power signature of values being sent and received

from the multiply unit, all values are interleaved with the corresponding confound-

ing value. For example, A1 (real input) and A2 (confounding input) are interleaved

together such that the first four bits of the first byte representing the input passed

to the multiply unit is A11,A21,A12,A22,A13,A23,A14,A24, thus two 32-bit numbers

interleaved together makes one 64-bit number. The same is done to B1 and B2, and

the two outputs C1 (actual output) and C2 (confounded output) are also interleaved

when being passed back to the JOP. Figure 13 better illustrates this new multiply

unit. With the introduction of the random values being processed and the multiplexed

signals, the data coming off the multiply unit no longer is directly correlated with

the data, thus helping to obfuscate the power signature (see the results in Section

4.3.3). Furthermore, because the “noise” during the multiplication is also created by

a multiplier and is not generated white noise, it is nearly impossible to separate the

two signals because there is no overt distinction. Lastly, de-coupling the multiply

unit from the clock makes correlating traces much more difficult.

The DAILMOM architecture is made up of several parts in VHDL. The first part

is the structural definition of a Booth multiplier, with 32 cascaded stages in each

multiply unit. Since the DAILMOM VHDL description does not include a clock, or

more specifically it uses only combinational logic, it needs to contain control logic so

that it knows when to multiply and it can synchronize with the rest of the JOP when
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the result is presented on the DAILMOM output port. The entire VHDL definition

for the DAILMOM can be seen in Appendix B, Listing B.1.

3.1.1.1 Dual Adder.

The Dual Adder is similar to the DAILMOM, except that the purpose of the Dual

Adder is to obfuscate the addition operation by making every two consecutive add

operations look different. This obfuscation via the Dual Adder is accomplished by

having two adders that the JOP alternates between each time an add operation is

evaluated. The two adders, the CLA adder and a RCA, are written in VHDL with

a central driver unit. The central driver unit is added to the JOP in such a way to

overload the original add operation, such that the Dual Adder driver is called for each

add operation instead of the previous addition module. The carry look ahead adder

VHDL can be seen in Appendix B, Listing B.5. The ripple carry adder is similar in

port definition as the carry look ahead adder, but its very different than the carry

look ahead in implementation. The ripple carry adder also uses two other pieces of

hardware, the full adder and a carry buffer (the carry buffer functions to keep the

stages from being optimized out by Xilinx). The architecture of the ripple carry adder

can be seen in Appendix B, where Listing B.2 shows the high level RCA definition,

Listing B.3 shows the full adder definition, and Listing B.4 shows the carry buffer.

3.1.2 Overloading the original JOP multiplier and adder.

After the code for the multiplier and adder was made and tested, it had to be

added to the JOP in such a way that the JOP would use the double adder when a

“+” was encountered in the Java code, and the DAILMOM would be used whenever

a “*” was encountered in the Java code.
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3.1.2.1 Connection to SCIO Bus.

To connect these new math hardware units to the JOP hardware was done through

the SimpCon Input/Output (SCIO) bus. A central “math” driver was created and

connected to the SCIO bus. This central driver allowed for one central point for the

JVM to go to when performing math operations, and controlled the connections to

both the adders and the DAILMOM. The code for the math driver can be seen in

Appendix B, Listing B.6.

3.1.2.2 Software Interaction with hardware.

Access to the math driver and any hardware in the JOP was made by defining the

ports in the const.java file. These are the ports that are read or written to by Java

when accessing the math driver. These port definitions can be seen in Appendix B,

Listing B.9. With the ports defined, hardware can be used with a simple Native.wr()

or Native.rd() to write to or read from a port.

3.1.2.3 Overriding Base Multiplier and Adder.

To get the JOP to use the hardware instantiated adders instead of the default add

operation for the JOP, the assembler instruction in the JOP had to be overwritten

to tell the JOP to look for a software implementation of the add operation. This was

done in Jvm.asm, and the code pertaining to the integer multiply and add operation

respectively can be seen in Appendix B, Listing B.7.

Without a definition for imul and iadd in jvm.asm, the compiler looks instead to

jvm.java for a software instantiation of the integer addition. The code inserted into

jvm.java for the adder and new multiplier can be seen in Appendix B, Listing B.8.

The code for the double adder is set up to alternate which adder is used, and when

an adder is used, the first value is loaded into the first add buffer then the second
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value is loaded into the second add buffer and the result is read. The code for the

multiplier is set to select a confounding input, interleave the two input values, wait

for a completion bit, and then un-interleave the output.

Now, with the multiply and add operation tied to the hardware object, when an

integer multiplication or addition is called, say, 8+9, 8 and 9 will be loaded into one

of the add module input ports and the result, 17, will be read from the same adder

module output port.

3.1.3 RSA Code.

To run RSA code, all that is required is a method to store large integers (at

least greater than the 32 bit limit of the JOP) and perform efficient power and mod

functions on the numbers. Originally for this thesis, the provided functionality from

Java for large numbers was provided as part of the BigInteger java class. This class

was not able to be implemented on the JOP because the JOP is a very small version

of the JVM environment and does not have the support of the full JDK package.

Because the BigInteger class could not be run on the JOP, the first idea was to write

a new version of the power mod function from scratch, implementing a simple binary

exponentiation. After a short time it was decided that this was beyond the scope

of the thesis so the use of the BigInteger class on the JOP was re-evaluated, and

eventually an abridged version of the BigInteger class was created that could run on

the JOP and had the needed functionality of RSA. Another difficulty in doing this

was that BigInteger had data dependencies in the MutableBigInteger class and the

SignedMutableBigInteger class that had to also be disregarded that would not be

able to run to allow them to be added to the JOP. In the end, the final version of

the BigInteger class had lost its ability to securely create prime numbers, the ability

to test the security of them, and several string functions that were also unnecessary.
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However, the modified BigInteger was able to create a BigInteger number from a byte

array, perform the ModPow() function on the number, and then pass the finished

result as a byte array back to the calling function. The functionality of prime number

creation would have been nice, but was totally unnecessary because for testing, the

same prime numbers were always used and there was no need for generation of new

keys.

3.2 Proposed Countermeasures against AES

In the protection of circuits running AES cryptography, protection methods are

based off the knowledge that the memory operations are the main avenue for informa-

tion leakage. With this in mind, the proposed hypothesis is that through the addition

of memory units, the correlation between the processed data and the EM emissions

can be significantly reduced. This reduction in correlation is because the values being

stored are split into two values, and each of the resulting values will always have a HW

of 16 regardless of what the original value was. The equal HW is important because

the leakage model for CMOS circuits use the HW of the plain texts to correlate them

with the actual values. The two methods used to test this hypothesis are to have dou-

bled variable cache in the execute stage to obfuscate the storage of data during the

execute stage and the other method is to have a doubled heap space to obfuscate the

storage of variables in the heap. In both cases, the obfuscation happens by splitting

the current value into two pieces, all the even bits and all the odd bits, and then stor-

ing all the even bits with their inverse as one value and storing all the odd bits with

their inverses as a second value. Having the bits and their inverse in the same value,

the Hamming Weight of every value being saved is always equal to half the bit length.

As can be seen in the code for the RAM segment in Figure 14, ram dout buffer is

the signal name given to the information that would normally be saved in the heap,
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Table 5. JOP execution Example A=B+C*D

Stack JVM
push B iload 1
push C iload 2
push D iload 3
* imul
+ iadd
pop A istore 0

and it is being split between the even bits in sram data out 0 and the odd bits in

sram data out 1, along with the inverted bits. Then, when reading a value from the

RAM, the two values that get read are sram data in 0 and sram data in 1 as can also

be seen in Figure 14, they get combined to re-form the actual data.

3.2.1 Implementation of Double Stack.

The JOP, as previously mentioned, uses a stack based architecture. In the JOP,

when an addition command like “iadd” is encountered, the JOP adds the top two

elements in the stack and then saves the result back to the top of the stack. For

example, Table 5 shows an example JOP stack instruction.

The Double RAM’s goal to obfuscate EM emissions is to change the way that

values are saved during the actual execution of the code. Using the two new con-

founded values for each value that would be pushed onto or pulled from the stack, the

Double Stack only stores values with a HW of 16. These two values are also stored

simultaneously onto the on-chip “RAM.” The full code for double stack is presented

in Appendix D.
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Figure 13. Dual Asynchronous In-Line Multiplexed Out/inputs Multiplier (DAIL-
MOM)

Figure 14. VHDL to interleave signals
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3.2.2 Implementation of Double RAM.

When the program is first downloaded to the FPGA board, it is saved into the

off-chip RAM. Because the program is normally only a few kilobytes, and there is

one megabyte of RAM, to implement the double RAM the current ram space was

cut in half. Every time a value was written to or read from RAM, one of the split

values was written to the low address space and the other corresponding value was

written into the high value space. Previously, the RAM module was called to read or

write a value, it would read once or write once. With the redesigned however, when

the RAM was called to read or write one value, two values consecutively are read or

written. The previous model of the RAM interface took 5 clock cycles to read and 6

to write, the modified version of the RAM then took 12 clock cycles to read and 16

to write, effectively doubling the time for RAM actions. The code for the modified

RAM module can be seen in Appendix E.

3.2.3 AES Code.

The original AES code worked on the JOP, but it required a some major mod-

ifications to greatly reduce the necessary Java garbage collection and to reduce the

number of objects that needed to be swapped in and out of memory. The original en-

cryption program uses Sbox.java to function as a look-up Table for the sboxes, it uses

KeyExpansion.java to find the keys that get XORed at the various stages and then it

uses AES Main.java as the main driving unit for the encryption. To reduce the over-

head of object swapping, all of the code was put into RSA Main Independant.java

with two functions, the main function which does almost everything in AES and

the shifting function which does an important shifting operation as part of the Mix-

Columns. Originally this was not possible, but by reworking a lot of the AES code

and optimizing everything, the main function absolutely maxes the size of any func-
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tion able to run on JOP to the extent that adding even one more line of code causes

the function to throw a “function too big” error when run on the JOP. The Code is

included as Appendix C.

3.3 Testing Overview

The testing overview section of this chapter covers the overview of the set up of the

experiments by outlining the goals and hypothesis, approach, system boundaries, sys-

tem services, workload, performance metrics, system parameters, factors, evaluation

technique and the experimental design.

3.3.1 Goals and Hypothesis.

With the susceptibility of microchips to SCA attacks, the first goal of this thesis

is to establish a security baseline. This baseline is the result of running cryptographic

code on the JOP implemented on the ML506 Virtex 5 evaluation board without

any countermeasures employed. Once the baseline is establish, the next goal of this

thesis is to implement each proposed countermeasures individually and compare the

resulting security against the established baseline.

The hypothesis of this thesis is that through the use of a dynamic hardware set,

that the security of cryptographic code running on the microprocessor can be made

more secure without changing the software, with respective area and time costs. The

two proposed hardware sets to increase the security of RSA are the Double Adder

and the DAILMOM, while the two proposed hardware sets to increase the security

of AES are the Double Stack and the Double RAM.
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3.3.2 Approach.

The goal to establish a baseline takes several steps to accomplish. First, the

cryptographic code needs to be enabled to run on the JOP; for example, the stack

size of 128Mb has to be increased to 256Mb to prevent a stack overflow due to the

computational need in the case of RSA. Once the code is running, Riscure Inspector

is used in conjunction with the Riscure XY table to locate the best hot-spot on the

FPGA. This hot-spot is needed in order to know where to acquire the best traces for

analysis. At this point, the power traces will be recorded for SCA attacks.

Establishing the security of the proposed countermeasures use a similar approach.

Once the proposed countermeasures have been implemented on the JOP, a hot spot

for the new JOP is located, traces recorded and then the cryptosystems are analyzed

again. The information from compromising the JOP with the countermeasures are

compared against the information from compromising the JOP without countermea-

sures.

3.3.3 System Boundaries.

The System Under Test (SUT) is the JOP, which includes the architecture needed

to implement the JOP on the FPGA. The actual test values are the recorded EM

emissions of the JOP and its architecture during testing. Furthermore, the JOP is the

only hardware implementation tested during this research. In addition to the JOP

being the SUT, the Components Under Test (CUT) are the basic JOP architecture,

and the specific hardened architectures of the DAILMOM, the Dual Adder, and the

Double Stack and the Double RAM. Figure 15 shows a block diagram of the SUT.
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3.3.4 System Services.

The system services of the JOP are a fully functional, pipelined microcontroller

with the capability to run either the RSA or the AES cryptography algorithm. These

are chosen because they are real world security algorithms, and thus the results of

this research has a real world relevance.

3.3.5 Workload.

The workload of the AES encryption and RSA encryption is the plain text that

is sent to the JOP via a laptop over a serial cable.

3.3.6 Performance Metrics.

The performance metrics are tailored to best measuring the increased security

provided by the components under test. First, tests are made to establish a baseline

with which to compare the rest of the data. As previously mentioned, the initial

baseline is completed by compromising the JOP without any additional hardware,

and then the new hardware is implemented and tested for security. In the case of

AES, the performance metric is the minimal number of traces needed to find the key

with a 95% confidence. In the case of RSA, because the Inspector software is not set

up to find the key of the optimized version of bit-group exponentiation used by Java,

the performance metric is the visual analysis using SPA.

These performance metrics are chosen because they directly reflect the real world

security of the encryption algorithms.

3.3.7 System Parameters.

The system parameters for the given system reflect the characteristics of the sys-

tem that if changed will have an effect on the responses. The three system parameters
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are the FPGA evaluation board used, the probe used, and lastly the oscilloscope used.

The most influential system parameter is the FPGA evaluation board that is used

because each evaluation board has a different Virtex 5 FPGA which changes the EM

signature. This is because the architecture of the FPGA strongly influences what the

EM off the FPGA will look like given a cryptosystem. The three options for FPGA

evaluations boards are the ML505, the ML506 and the ML507. For this research,

after the ML505 board was damaged beyond repair, the ML506 was used with the

Virtex 5 XC5VSX50T.

The next most important system parameter is probe used to measure the EM

traces. The Wilcox RF probe and EM probes were originally used, but then replaced

by the Riscure EM probe because the Riscure EM probe has the best resolution for

the recorded traces.

The final system parameter was the oscilloscope that was used. Provided that the

oscilloscope was able to provide the necessary functionality of a fast enough sample

rate, the oscilloscope used was not nearly as important as the other two parameters.

Although the Lecroy 7zi WaveRunner was initially used, the Lecroy 8zi WaveMaster

was used for all the results in presented in this research.

3.3.8 Factors.

The factors of the system are based on the system parameters. The factors for

the target FPGA include the FPGA itself and its surrounding hardware, the interface

used, and the power supply.

The oscilloscope had several different factors to choose between. The first and

most important factor is the sampling frequency. Based on a desire to capture all of

the information every 99Mhz clock cycle, a frequency above 200Mhz has to be chosen.

The Nyquist frequency is twice the highest frequency that needs to be captured and
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is the slowest sampling rate needed to capture relevant information, thus 198 Mhz is

the Nyquist frequency for the 99Mhz clock. When possible, data is taken at 1Ghz to

provide a fast enough sampling rate and enough data points to capture the important

portion of the encryption algorithm. The next factor is the use of a physical filter to

remove unwanted frequencies. If a filter is not used, harmonics higher than half the

sample frequency would be aliased. To avoid the aliasing at 1Gs/s for frequencies

higher than 500Mhz, a low pass filter with a 200Mhz cut-off is selected. The final

factor was the use of coupling, where DC coupling allows all of the signals to pass

to the sensor, and AC coupling passes only the AC components of signals while

attempting to remove a DC bias. DC coupling is used in order to allow the largest

amount of recorded data.

3.3.9 Evaluation Technique.

The evaluation of different protection techniques are assessed using actual, mea-

sured results. For this research, actual results are better than simulated results be-

cause the actual results directly represent the real world threat. Data is collected

using a Lecroy oscilloscope and Riscure EM probe, and analysis is done using the

Riscure Inspector analysis program on the computer.

3.3.10 Experimental Design.

Experiments are split up into AES tests and RSA tests because the counter mea-

sures employed to protect AES do not affect RSA vulnerabilities and likewise RSA

SCA countermeasures do not affect AES security. When testing AES, ten data points

are be taken at three different locations identified as leaking the most information

while employing each of the three hardware sets (the hardware without counter mea-

sures, the hardware with the double stack, and then the hardware with the double
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RAM). Then each position is compared within itself for outliers. Once each position

contains only the data points within a 95% confidence, all of the data points for each

of the hardened architectures is compared against those from the baseline using a

2-sampled t-test.

In testing RSA, the actual key cannot be derived from the data due to an incon-

gruence between Java’s optimized bitgroup exponentiation and the regular bitgroup

exponentiation expected by Inspector. Thus, it is shown how Inspector would nor-

mally find the key, and show visually the correlation of the traces, and look for obvious

differences in the correlation as proof of an increase in security.

3.4 Testing Setup

The testing equipment for all experiments used a Lecroy oscilloscope, the Riscure

XY table, the Riscure EM probe, the FPGA board and related peripherals and a lap-

top running Riscure Inspector. The Lecroy oscilloscope used was an 8zi WaveMaster

or the Lecroy 7zi Waverunner oscilloscope depending on availability. Due to a limit

with Riscure Inspector, the largest amount of memory available was 20 MegaSam-

ples regardless of the oscilloscope, and the max sample rate was 10 GigaSamples per

second. See Figure 16 for an example of the 7zi model.

Initial tests for cryptographic security were done using the Wilcox EM Probe and

the Wilcox RF probe. See Figures 17 and 18 respectively. During those tests, When

the EM probe was used, data was taken from the underside of the FPGA board.

When the RF probe was used, data was taken by touching the probe to the contact

for T18, the power capacitor.

Due to poor results with these probes on the previous ML505 board, the RISCure

XY table with the RISCure EM probe were used instead (see Figure 19).

The final decided upon set up can be seen in Figure 20. As is seen in the pic-
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Figure 15. System Under Test (SUT)

Figure 16. Lecroy 7zi oscilloscope
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Figure 17. EM Probe

Figure 18. RF Probe

Figure 19. RISCure XY table with EM probe
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ture, the FPGA board has the connections of the provided power supply, the JTAG

interface which was used to program the FPGA, the serial cable with which the Java

instructions were sent to the JOP, and the trigger attached to two of the pins on the

pin jumper. The computer had the other end of the JTAG interface, the serial cable,

and it had the key dongle for Inspector to allow Inspector to be used on the laptop.

The oscilloscope, seen in Figure 21 shows the output of the EM probe connected to

the second channel, and the trigger connected to the third channel. Lastly was the

power supply, seen in Figure 22, supplied power to the active Riscure EM probe.

Figure 20. Laptop and Riscure XY Table
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Figure 21. Lecroy oscilloscope being used

Figure 22. Power supply to Active EM Probe
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IV. Experimental Results

Chapter 4 contains the experimental results and is split into three sections. The

first section is labeled “Initial Data Collection” and outlines the original flow of ex-

periments, initial hang ups, layout considerations on the Virtex 5, and then some

code considerations. The second section outlines the AES attacks on the JOP and

the results of the Double Stack and the Double RAM. The final section of Chap-

ter 4 outlines the attacks on RSA and the results from the Double Adder and the

DAILMOM.

4.1 Initial Data Collection

4.1.1 Initial Attacks.

To begin the thesis experiments, a baseline was needed to juxtapose the results

from the proposed circuitry countermeasures to show increases in security. This

baseline consisted of the basic JOP using only the original circuitry.

The ML506 was chosen to be the physical test platform for this research because

there were a least two of ML506 boards available (for redundancy) and because it did

not contain a PowerPC core (which would have been wasted space). Although the

ML506 has additional DSPs that were not necessary, they did not affect the usable

area on the FPGA the way the PowerPC does. Using the new ML506 evaluation

board, and the new Inspector EM probe, the trace seen in Figure 23 resulted. This

trace clearly shows all 10 rounds of the AES encryption.

To try to pinpoint the best location to attack the AES encryption, an XY plot

was made of all the data and then the 99Mhz frequency was pinpointed for the traces

doing the full AES encryption. See Figure 24 for the XY plot of the 99 Mhz signal

during the full AES encryption.
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Understanding the vulnerability of the S-box substitution in AES encryption, the

probe was set up to trigger during the first SubBytes function. This resulted in the

XY plot shown in Figure ??. From this Figure, and looking at the traces that resulted,

trace 44 (shown in Figure 25) was chosen as the point over which to position the probe

due to it having the clearest signal and showing the largest number of peaks in the

trace per substitution. The position on the FPGA of trace 44 can be seen in Figure

24 as the small light green box near the middle of the chip with a white boarder

around it. The trace chosen appeared to show all 16 Bytes being substituted well,

while some of the other traces had overall stronger 99Mhz signals, they did not show

all 16 bytes as distinctly.

After finding a good location with a clean representative trace showing all 16

byte substitutions, the probe position was set and a data capture was done capturing

20,000 traces resulting from random inputs. This was done at 1 GS/s, with 1Ms of

data and a 200 Mhz filter. The average trace of the 20,000 traces is shown in Figure

26.

The straight data without processing was analyzed over the course of 14 hours

to verify Inspector’s ability to derive the correct key on a desktop computer using

Windows 7 x64, interfacing with an Nvida GTX460 video card with 336 Compute

Unified Device Architecture (CUDA) cores. The correct key was found, verifying the

data collected did contain the necessary key information. After verifying this result,

Figure 23. Example traces showing periodic nature of AES (10 rounds)
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(a) Full AES encryption (b) S-box substitution

Figure 24. Plot of the surface of the FPGA during the full AES encryption (a) and
during the first S-box substitution (b) showing only the 99Mhz signal where red shows
the largest amount of signal and blue shows the least amount of signal

Figure 25. Trace chosen of S-box substitution

Figure 26. Average S-box substitution trace
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different data processing techniques were used to increase the signal to noise ratio

and reduce the needed traces down from 20,000 and time down to several seconds.

To do this, the processes of trace alignment, absolute values, low pass filter, and

synchronous resampling at 99Mhz clock frequency. Of the options explored, taking

the absolute values of the traces and synchronous resampling the traces at the clock

frequency had the greatest effect. Taking the absolute values of the traces had a

large effect because in the analysis of the EM spectrum, the orientation (negative

or positive) of the peaks does not matter. The resampling at the clock frequency

means that the values surrounding each clock tick was replaced with a single value

for that clock cycle. Although some information was lost by doing this, time savings

for processing was dropped to less than 1% of the previously needed time.

After the preprocessing was complete, it was found that for the given traces, the

minimal number of traces needed was 80 to produce the correct key guess.

4.1.2 Evaluation of More Dense Mapping Techniques.

Although the correct key can be found by looking at the SubBytes fuction on the

JOP in its current form, it was thought that through better mapping onto the FPGA

better results could be attained. The JOP was currently mapped onto the FPGA

through a non-deterministic random manner producing the spread out pattern seen

in Figure 27. Due to its random placement, it was thought that through reducing the

footprint of the JOP using Xilinx PlanAhead and forcing the JOP to be mapped onto

a smaller area in the middle of the FPGA, the signal to noise ratio would be higher

rendering the JOP more susceptible to SCA attacks and thus reducing the number of

possible confounding variables. The resulting spectral intensity plot looked exactly

the same as plot before changing the mapping of the JOP, as can be seen in Figure

29. Knowing this, and through several more tests on different random arrangements
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of the JOP on the FPGA showed that the largest intensity of the power traces was

always from the same location, centered over position 44 (seen in Figure ?? as the

small light green box near the middle of the chip with a white boarder around it).

Figure 27. Original JOP architecture placed on FPGA

Upon further investigation, it appeared that the coupling capacitors under the

FPGA were causing the strong information leakage in the middle of the board, and

when the probe was centered over capacitor C1 which connected FPGA AVDDD

to GNDA FPGA, regardless of the mapping of the JOP on the FPGA, the signals

were always the best. See Figure 30 to see the capacitor with the most clear leakage

signal.

Knowing the importance of the capacitor bank in the leakage of the information,

it was thought that perhaps better results could be acquired by looking with the

probe underneath the board. However, after attempting to record the 16 cycles of

the SubBytes command under the board resulted in Figure 31, which was significantly

less clear than Figure 25 as seen by taking the same data reading from the top.
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Figure 28. Consolidated JOP architecture placed on FPGA

Figure 29. Spectral Intensity Plot for Dense JOP
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Figure 30. Power capacitor giving best SCA information leakage circled in red

Figure 31. AES SubBytes as seen from the bottom of the FPGA
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Table 6. FPGA Design Resource Utilization

clean ram timing iadd imul ALL
Register 4 4 4 4 11 12
LUT 8 8 8 8 20 21
Block Memory 3 3 3 3 3 3
Clock Manager 5 5 5 5 5 5
Global Clock Buffer 3 3 3 3 6 6
IO 14 14 14 18 18 18

Furthermore, it was interesting to note the difference in area taken up by the

“clean” version of the JOP on the FPGA and the area taken up by different obfus-

cation techniques. The area taken up by the original JOP on the FPGA and the

corresponding areas for the proposed countermeasures can be seen in Table 6.

Although most of the obfuscation techniques required only a negligible amount of

resources, the DAILMOM was resource heavy. Due to the large disparage between

the clean JOP and the JOP with the DAILMOM, there was a risk that it might be

easier to extract the key from the clean JOP just because there was less circuitry,

not because of anything in specific the circuitry was doing. Thus, to rule out this

confounding variable, all tests were done with “ALL” hardware instantiated on the

JOP, although the hardware was not always enabled. For example, when running

tests with the clean JOP without countermeasures, the circuitry for both the double

adder and the DAILMOM were present, although neither the iadd operation nor the

imul operation was overridden.

Lastly it was also important to note the proposed time increases for the actual

time increases for the countermeasures, as can be seen in Table 7. The “Actual Time

Increases” are the actual increase of time for the JOP to perform the encryption

algorithm while the “Proposed Time Increases” account for what the time increases

would be on a JOP where the countermeasures had been fully integrated. Being “fully
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Table 7. FPGA Design Resource Utilization

Proposed Time Actual Time
Increase Increase

Double Adder 0% 150%
Double Multiplier 0% 2000%
Double Stack 0% 0%
Double RAM 250% 250%

integrated” denotes that the JOP math operations do not need to be overridden,

instead they are the only method the JOP has for addition and multiplication and

thus the bus width to the math units can be increased to accommodate the change.

In theory, the fully integrated math units would take no extra time to complete since

currently the only time increases are due to the difficulty interfacing with them.

4.1.3 Code Considerations.

To further understand this architecture, the JVM bytecodes used by the actual

code were considered. When compiling Java code, the JVM translates the actual Java

code of the SubBytes function, seen in Figure 32, to assemble, which can be seen in

Figure 33.

Figure 32. Sub bytes in java code

Looking at the assembler code, the red box labeled “A” represents the translation

of the native.wr function (the trigger pin). Red box B is the first for loop which spans

the whole encryption algorithm. Red box C is the first of the two “for” loops and
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red box D is the second “for” loop to cycle through all 16 bytes, and red boxes E

and F represent the conditional branch statements at the end of the for loops. The

code in between the red boxes is the execution of the Java command “state[dog][j] =

(byte)S Box[(state[dog][j] >> 4)&0xf ][state[dog][j]&0xf ];.” Of particular note are

the stack operations on lines 783 through 824 and the operation on 826 which sends the

finished information back to the heap in external RAM. After the code is assembled,

it is then compiled to machine language.

4.2 AES Tests

The AES tests were run on the JOP first without any countermeasures, then they

were run again with the double stack, and then once more for the double RAM.

The clean JOP without countermeasures functioned as the baseline with which to

compare the results from the two countermeasures. When conducting all three tests,

mapping out the XY spectral plot for the area of analysis (the subbytes function) was

conducted first, then the location with the most distinguishable traces was selected.

This was done three times for each test resulting in three locations for each test.

Although the locations were very close to one another, all located over capacitor C1,

they had minor variations in position. At each position 10,000 traces were recorded.

From these traces, using every thousand as a different data point, the necessary

traces to evaluate the correct key byte for key byte 1 was evaluated. For example, if

starting with the first trace, trace 0, if it took 331 traces to get a correct key guess.

Then the next data point would start with trace 1000 and see how many traces were

needed to get the key guess, and so on and so forth starting at trace 2000, 3000, 4000

and all the way to trace 9000. For all traces, the sampling rate was 1GS/s with a

200Mhz filter. Once the data was collected, it was resampled to a frequency of 99Mhz.

Resampling means that if there were previously 10 samples for each tick of the clock,
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then Inspector would average all 10 samples and replace the 10 samples with one

sample representing that clock cycle. This result was then rectified by passing it

through an “abs” filter which takes the absolute value of all the samples to make all

numbers positive (and increase correlation between samples). Lastly, as can be seen

from the traces, when the math calculations are being performed on the data (which

used the stack), it is seen as the valleys (see Figure 34), and when values are written

to the RAM, it appears as the mountains in the traces (see Figure 35).

4.2.1 JOP Clean.

In testing the JOP without countermeasures, the JOP before modification can be

seen in Figure 36 and the trigger associated for when Subbytes is being performed

can be seen in 37. Lastly, after being resampled and rectified, the actual trace being

considered for security is seen in Figure 38.

The test was repeated three times in three positions over the power capacitor C1.

Although the positions were all in the same general area, they were all in slightly

different locations. The data points for each position were split up between the

portion of execution and the portion of RAM writeback. The results for the minimum

number of traces needed for the three positions over the power capacitor during the

execution portion of the power trace for the first key byte are seen in Table 8 and

the corresponding box plot of the data showing outliers can be seen in Figure 39.

Likewise, the results for the minimum number of traces needed for the three positions

over the power capacitor during the RAM writeback of the power trace for the first

key byte are seen in Table 9 and the corresponding box plot of the data showing

outliers can be seen in Figure 40.

An interesting thing to note at this point when only considering the original

JOP, the overall average number of traces needed to derive the key during the RAM
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Figure 33. Subbytes Assembled Code

Figure 34. Location of AES attack during execute stage for first key byte

Figure 35. Location of AES attack during RAM writeback for first key byte
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Figure 36. AES trace on unprotected JOP

Figure 37. Trigger for AES trace on unprotected JOP

Figure 38. AES trace on unprotected JOP after resampling
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Figure 39. Box Plot of results from unmodified JOP during execution stage

Figure 40. Box Plot of results from unmodified JOP during RAM writeback
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Table 8. Minimum traces needed for correck key using unmodified JOP looking at the
execution portion

Clean JOP Execution portion
traces Position 1 (traces) Position 2 (traces) Position 3 (traces)
0-999 301 293 269
1000-1999 303 322 249
2000-2999 253 251 389
3000-3999 66 362 311
4000-4999 316 573 192
5000-5999 522 433 303
6000-6999 159 157 251
7000-7999 276 357 470
8000-8999 269 402 152
9000-9999 294 330 425
Average: 275.9 348 301.1
Stdev: 116.505 111.034 101.157
Overall Average: 308.3

writeback portion of the trace was 154.8 traces and required only about 275 sample

of each trace (the highlighted portion in Figure 35), but the overall average number

of traces needed to derive the key during the execution portion of the trace was

308.3 traces and needed about 2,050 samples per trace (the highlighted portion of

Figure 34). This meant that there was an average of 42 Kilosamples needed during

the RAM write back and an average of 632 kilosamples needed during the execution

stage. This difference in needed traces is because the values that correlate for the

AES SCA attack are only available toward the end of the execution potion and the

RAM write back uses a lot more power to interface with the RAM module which is

located off the FPGA resulting in strong emissions off the chip.

4.2.2 JOP With Double Stack.

Next, tests were conducted on the JOP using the Double Stack countermeasures.

The traces can be seen in Figure 41 and the trigger associated for when Subbytes is
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Table 9. Minimum traces needed for correct key using unmodified JOP looking at
RAM writeback

Clean JOP RAM Writeback
traces Position 1 (traces) Position 2 (traces) Position 3 (traces)
0-999 256 337 308
1000-1999 244 55 230
2000-2999 146 82 94
3000-3999 85 110 72
4000-4999 195 170 60
5000-5999 72 126 70
6000-6999 106 117 116
7000-7999 137 168 232
8000-8999 460 175 66
9000-9999 183 119 47
Average: 188.4 145.9 129.5
Stdev: 114.003 77.477 92.151
Overall Average: 154.6

being performed can be seen in Figure 42. Lastly, after being resampled and rectified,

the actual trace being considered for security is seen in Figure 43.

Figure 41. AES trace of JOP with double Stack

The test was repeated three times in three positions over the power capacitor C1.

Although the positions were all in the same general area, they were all in slightly

different locations. The data points represent only the execution stage of the trace

because that is the only portion of the trace that would be effected by the Double

Stack. The results for the minimum number of traces needed for the three positions

over the power capacitor during the execution portion of the power trace for the first
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Table 10. Minimum traces needed for correck key using Double Stack

Double Stack Execution portion
traces Position 1 (traces) Position 2 (traces) Position 3 (traces)
0-999 253 285 153
1000-1999 385 276 129
2000-2999 287 207 522
3000-3999 174 227 167
4000-4999 289 404 148
5000-5999 373 263 33
6000-6999 314 147 418
7000-7999 178 330 204
8000-8999 400 246 502
9000-9999 166 69 323
Average: 281.9 245.4 259.9
Stdev: 88.624 92.938 170.166
Overall Average: 262.4

key byte are seen in Table 10 and the corresponding box plot of the data showing

outliers can be seen in Figure 44.

4.2.3 JOP With Double RAM.

Next, tests were conducted on the JOP using the Double RAM countermeasures.

The traces can be seen in Figure 45 and the trigger associated for when Subbytes is

being performed can be seen in Figure 46. Lastly, after being resampled and rectified,

the actual trace being considered for security is seen in Figure 47.

Figure 42. Trigger for AES trace of JOP with double Stack
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Figure 43. AES trace of JOP with double Stack after resampling

Figure 44. Box Plot of results from JOP with Double Stack during execution stage

Figure 45. AES trace on JOP with double RAM
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Table 11. Minimum traces needed for correck key using JOP with Double RAM

Double RAM RAM Writeback
traces Position 1 (traces) Position 2 (traces) Position 3 (traces)
0-999 336 115 161
1000-1999 195 177 312
2000-2999 249 133 175
3000-3999 289 148 231
4000-4999 234 191 133
5000-5999 157 203 281
6000-6999 198 124 314
7000-7999 345 220 355
8000-8999 205 122 238
9000-9999 366 180 162
Average: 257.4 161.3 236.2
Stdev: 72.656 37.594 77.104
Overall Average: 218.3

The test was repeated three times in three positions over the power capacitor C1.

Although the positions were all in the same general area, they were all in slightly

different locations. The data points represent only the RAM writeback portion of

the trace because that is the only portion of the trace that would be effected by the

Double RAM. The results for the minimum number of traces needed for the three

positions over the power capacitor during the RAM writeback portion of the power

trace for the first key byte are seen in Table 11 and the corresponding box plot of the

data showing outliers can be seen in Figure 48.

Figure 46. Trigger for AES trace on JOP with double RAM
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Figure 47. AES trace on JOP with double RAM after resampling

Figure 48. Box Plot of results from JOP with Double RAM during RAM writeback
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4.2.4 Obfuscation of Execute Portion of Trace.

Performing a two sided t-test on the results from the unmodified JOP during the

execute stage and JOP with the Double Stack during the execute stage after removing

the outliers as noted in the box plots above yielded a 95% confidence interval of -95

traces to 14 traces. This means that with a 95% confidence, the difference in the

average number of traces for the population will lie somewhere between -95 traces

and 14 traces. Put more specifically, because 0 lies in the 95% confidence interval, the

results are 95% confident that these data sets are not different. That is to say that

the Double Stack modification did not have an appreciable change in the number of

required traces for the discovery of the first key byte during the execution portion.

This, however, does not come as a very big surprise. The JOP contains many registers

that pass the value of the result from the Sbox substitution, and each time the value is

passed from one register to the next information is leaked. The goal of the double stack

to increase protection was based on the stack having a stronger leakage signal than

the registers, and thus having an appreciable change in the security when modified.

As it turned out, the information off the stack is not significant when compared to the

leakage of the registers in Stack.vhd that hold the value before actually passing it to

the stack. Additionally there are the registers in Core.vhd, JOPcpu.vhd, mem sc.vhd,

sdpram.vhd and to JOP ml50x.vhd which all contain registers that hold the finished

value. The only way to fix this problem is to change the underlying structure of

the JOP from a Von Newmann architecture to a Harvard architecture. Currently

the JOP stores the values for the data and the instructions in the same RAM, but

changing the architecture to a Harvard Architecture would mean changing the JOP

such that instructions and data are saved in two separate memory spaces. Allowing

the data to stay split into two corresponding variables right up until execution on the

data, and then re-split into two values again after execution and be saved that way
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Table 12. Results from a two sided T-test on the execution stage of subbytes when
comparing the unmodified JOP to the JOP with the double stack without outliers
shown in Box Plots

t-value -1.5061
degrees of freedom 52
p-value 0.1381
95 percent confidence interval: -95.043 13.543
sample mean estimates: 264.25 305.00

in the main data memory would allow all registers in the JOP to be obfuscated. Due

to the JOP having a Von Newmann architecture and thus an inability to distinguish

instructions from data in the main memory, an instruction cannot be split between

two values until the execute phase because it would cause instructions to be decoded

wrongly and the JOP to crash.

4.2.5 Obfuscation of the RAM write back of the Trace.

Performing a two sided t-test on the results from the unmodified JOP during the

RAM writeback and the Double RAM during the RAM writeback after removing the

outliers as noted in the box plots above yielded a 95% confidence interval of 43 traces

to 137 traces (see Table 13). This means that with a 95% confidence, the difference

in the average number of traces for the population will lie somewhere between 43

traces and 137 traces. Put more specifically, the Double RAM had a substantial im-

provement in the security for the RAM writeback portion of the trace. This gives

us an increase in the number of traces over the unmodified JOP to be between 31%

increased security and 87% increased security with a 95% confidence. This also comes

as no surprise. As mentioned in the previous section about the JOP without coun-

termeasures, there was a significantly greater leakage of information during the RAM

write back, requiring 7% of the samples needed during the execution stage (42KS vs
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Table 13. Results from a two sided T-test on the execution stage of subbytes when
comparing the unmodified JOP to the JOP with the double stack without outliers
shown in Box Plots

t-value 4.2493
degrees of freedom 56
p-value 8.187e-05
95 percent confidence interval: 42.878 137.178
sample mean estimates: 264.25 305.00

632KS). With this knowledge, we know that the RAM write back module leaks sig-

nificantly more information than the regular registers inside the JOP. Knowing this,

obfuscating the leakage off the RAM write back module has a measureable increase

in security.
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4.3 RSA Tests

4.3.1 JOP without countermeasures.

As mentioned in Chapter 2, Java uses bit group exponentiation to accomplish the

RSA module. To attack this algorithm, the traces need to be prepared such that only

the multiplies are evident and are large enough such that given a threshold, Inspector

can “resample” each multiply operation and replace it with a single data point.

In collecting data, the oscilloscope was set to trigger during just the exponen-

tiation, and the traces acquired can be seen in Figure 49 using the trigger seen in

Figure 50. Like earlier, this sample group was originally recorded at 1GS/s, and then

rectified and resampled, which the resulting trace can be seen in Figure 51. It was

seen that spikes in the trace occurred at a 3Mhz sample frequency, so this trace was

resampled again to an even lower frequency to prepare it for a weighted low pass

filter, and the resulting trace can be seen in Figure 52. Then this graph was filtered

(see Figure 53) and then resampled in such a way that each multiply was recorded as

one trace for analysis, resulting in Figure 54.

Figure 49. Plot of RSA bitgroup exponentiation without countermeasures

At this point, Inspector was used to correlate and find the binary key. The actual

key was 0x1D however Inspector found a key of 0x1B. Upon further investigation, it

was found through looking at Inspector files on the RSA high order analysis that In-

spector employs bitgroup exponentiation differently. As earlier explained in Chapter

2, Java first calculates all the odd powers of the base number and optimizes out the
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Figure 50. Plot of trigger for RSA bitgroup exponentiation without countermeasures

Figure 51. Plot of RSA bitgroup exponentiation without countermeasures after resam-
pling

Figure 52. Plot of RSA bitgroup exponentiation without countermeasures after second
resampling

Figure 53. Plot of RSA bitgroup exponentiation without countermeasures after a
lowpass filter
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even powers of the base number. The optimization occurs by knowing that multiply-

ing a number by a second number, then squaring the product (a = (b ∗ c)2) is the

same as saying squaring the first number, and multiplying that by the square of the

second number (a = b2 ∗ c2). Thus, when java encounters the need to multiply by

an even exponent, say c6, then it first multiplies by c3 and then squares the result.

Inspector does not use this optimization and expects both even and odd powers to

be used in exponentiation. For example, if the exponent bit sequence “110” is en-

countered, java will perform a square, square, multiply by c3 and then square it the

third time. On the other hand, Inspector is expected that when a “110” is encoun-

tered, the cryptosystem will perform a square square square and then multiply by

c6. It gives the same result in the end, except that Inspector is not set up to derive

a key for a bitgroup exponentiation that has been optimized. In an attempt to get

Inspector to function with the optimized version, a key was used that contained only

odd powers (0x39). This key causes Java to perform three squares, then multiply by

n7, then perform 3 more squares and multiply by n. The resulting trace can be seen

in 55. Unfortunately, it was brought to light that another problem existed in using

the Inspector module - peaks are generated for the squares and the multiplies like

expected by Inspector, but then they are also generated for the Modulus function

which calls an algorithm that is similar to the division algorithm. Because Inspector

is not set up to handle this situation either, the ability for Inspector to be able to

Figure 54. Plot of RSA bitgroup exponentiation without countermeasures after the
filtered resampling
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generate a correct key was dropped in favor of looking at the filtered resampled trace

for an overt pattern. As can be seen in Figures 54 and 55 there is an overt pattern

that all traces are following. Thus this version of RSA is not protected.

Figure 55. Plot of RSA bitgroup exponentiation without countermeasures after the
filtered resampling

The last test run on the unmodified version of the JOP was to see if it was possi-

ble to see the same information if the sample rate on the oscilloscope was reduced to

250MS/s and everything else was kept the same. The resulting trace can be seen in

Figure 56. This was in important test because the version of the JOP with the DAIL-

MOM takes significantly longer due to having to write the values to ports and thus

the fastest it could be sampled was 250MS/s. Although in the previous spectrums,

frequencies higher than 125 Mhz did exist in small number, those frequencies would

be aliased at this slower sampling frequency effectively creating more noise. When

the same test was run at the slower frequency, effectively the same results were found

(as compared to the same data at the higher frequency as seen in Figure 55), showing

that the results at 250MS/s are still valid.

4.3.2 JOP with Double Adder.

Next, the JOP was analyzed with the Double Adder, and the traces acquired can

be seen in Figure 57 using the trigger seen in Figure 58. Like earlier, this sample

group was originally recorded at 1GS/s, and then was rectified and resampled, which

the resulting trace can be seen in Figure 59. At this point, there is a clear increase
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in noise due to the Double Adder. This significant increase in the noise renders these

trace unable to use the previous method of analysis because an acceptable threshold

above the noise could not be reached such that a resampling of the multiplies could

not happen. After several attempts at different options, it was found that by manually

zeroing out the portions in between the multiplication spikes that contained noise,

resulted in Figure 60 and then running the filter resulted in the trace seen in Figure

61 the final resampling could be used resulting in the Figure 62. Unfortunately,

as seen previously with the unprotected JOP, using the Double adder along with

the synchronous hardware multiplier that came with the JOP did not obfuscate the

traces.

As a result, it was thought that perhaps by using a simple software multiplier

some measure of obfuscation would result because the multiplies would then rely on

the Double Adder when calculating a value. Figure 63 shows the code for the software

multiplier where first the sign of the result is calculated, and then the code serially

goes through all 32 bits adding and shifting when necessary. This change resulted in

the resampled trace seen in Figure 64 and the filtered resampled trace seen in Figure

65. Unfortunately, there was still no obfuscation even though the multiply unit relied

on the double adder for calculations. After running these tests, it became obvious why

there was no difference in the traces though. The double adder alternates every time

in a round robin fashion, and each multiply operation calls 32 adds, every multiply

Figure 56. Plot of RSA bitgroup exponentiation without countermeasures after the
filtered resampling on a sample with an original oscilloscope sampling rate of 250Mhz
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Figure 57. Plot of RSA bitgroup exponentiation with Double Adder

Figure 58. Plot of trigger for RSA bitgroup exponentiation with Double Adder

Figure 59. Plot of RSA bitgroup exponentiation with Double Adder after resampling

Figure 60. Plot of RSA bitgroup exponentiation with Double Adder after zeroing out
noise by hand
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operation will have 16 adds with the Carry Look Ahead adder and 16 adds with the

Ripple Carry Adder. Thus, the average trace for each multiply would be the same,

and there would not be any noticeable obfuscation.

4.3.3 JOP with DAILMOM.

The last test conducted for the RSA countermeasures was to implement the JOP

with the DAILMOM. The test resulted with the initial trace (Figure 66) with the

corresponding trigger (Figure 67). This was then resampled as previously done with

the JOP without countermeasures resulting in the trace in Figure 68. Because the

noise was low in-between multiplies like in the original JOP, it was possible to resample

it again to reduce the frequency further and the resulted in the trace in Figure 69.

This was then filtered resulting in the trace shown in Figure 70. This filtered trace

was then resampled once more resulting in the final trace shown in Figure 71.

The final result, shown in Figure 71 shows that the DAILMOM had a significant

effect on the multiplications. Where previously in the clean JOP (Figures 54, 55,

and 56), and the JOP with the Dual Adder (Figures 62 and 65) there was a notice-

able pattern that multiplies and squares followed, when using the DAILMOM this

pattern is obfuscated showing success of the DAILMOM in obfuscating the bitgroup

exponentiation of RSA.

Figure 61. Plot of RSA bitgroup exponentiation with Double Adder after a lowpass
filter
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Figure 62. Plot of RSA bitgroup exponentiation with Double Adder after the filtered
resampling

Figure 63. Software version of a multiplier

Figure 64. Plot of RSA bitgroup exponentiation with Double Adder using software
multiplier after resampling
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Figure 65. Plot of RSA bitgroup exponentiation with Double Adder using software
multiplier after the filtered resampling

Figure 66. Plot of RSA bitgroup exponentiation with DAILMOM

Figure 67. Plot of trigger for RSA bitgroup exponentiation with DAILMOM

Figure 68. Plot of RSA bitgroup exponentiation with DAILMOM after resampling
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Figure 69. Plot of RSA bitgroup exponentiation with DAILMOM after resampling a
second time

Figure 70. Plot of RSA bitgroup exponentiation with DAILMOM after a lowpass filter

Figure 71. Plot of RSA bitgroup exponentiation with DAILMOM after the filtered
resampling
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V. Conclusions and Future Work

Chapter 5 is divided into the conclusions of the work completed and the proposals

for future work.

5.1 Conclusions

With cryptography being susceptible to SCA attacks, great caution should be

taken to ensure that a given cryptography implementation on a given hardware is not

at high risk of being compromised. To this end, this research’s purpose is to provide a

novel and effective way to prevent or deter the compromise an AES or RSA software

implementation.

5.1.0.1 AES Conclusions.

For AES encryption it is found that using the double stack did not have a statistical

increase in security. The lack of security increase for the double stack was because it

protected only one of many different registers on the chip that leak SCA information

about the value. Before the change to the stack, it too leaked SCA information just

like the other registers on the JOP. After the change to the stack, the stack no longer

leaked the SCA information like before, but the other registers still did. Because

only the stack was changed, and the other registers still leaked the information as

before, the increase in security due to the stack change was negligible. To correct

this problem, the underlying data structure of the JOP would need to be changed.

Currently the JOP employs a Von Neuman architecture where both the instructions

and the data are both saved in the same RAM. If the JOP structure was instead

changed to a Harvard Architecture, where the instructions and data are saved in two

different locations, it would be possible to split the data values and save them split
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in the double RAM, and keep them split as they move through the JOP all the way

to the execute phase when they would be temporarily “re-assembled” and used for

calculations. After the calculation was complete, the value would be re-split and

kept in two halves that each had the same hamming weight. The importance of the

change is that the registers that still leaked information about the value even after

the change in the stack, would not longer leak any information. This is not currently

possible in the JOP because when a value is read from the RAM, instructions and

data are indistinguishable and obfuscating instructions would cause a runtime error.

Changing the underlying architecture could reasonably increase the protection of the

JOP several orders of magnitude, making the JOP 100 or 1000 times more secure

by removing all the leaky registers on the JOP. On the other hand, the Dual RAM

did have a measureable difference in security. With a 95% confidence, it was seen

that there was between 31% to 87% increase in the number of traces necessary for

Inspector to find the correct key.

5.1.0.2 RSA Conclusions.

Because the RSA results could not depend on Inspector’s ability to find the key

from the traces, SPA was used to note the correlation of the data to a recognizable

bitgroup pattern. Although implementing the Double Adder did greatly increase the

noise of the function, a way was found to zero out the noise and still do an analysis

on the results from the Double Adder. As it turned out, regardless of using the

external synchronous multiplier, or a software multiplier that employed the Double

Adder, the traces still formed a recognizable pattern. The reason for this was simple,

in the case of using the external synchronous adder that came with the JOP, no

obfuscation occurred during the multiplications because the Dual Adder was not being

used during the multiplications. Then, when employing the software multiplication
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method, the double also had a negligible effect because each adder was both being

called 16 times for each multiply, thus the average for each multiply was always the

same. On the other hand, after testing the JOP with the DAILMOM, and processing

the results, it was found that employing the DAILMOM actually did obviously remove

the correlation between the data and the exponent, showing an obvious increase in

obfuscation and thus an increase in security.

5.2 Future Work

Future work following this research can take two directions, either further research

can be done into finding methods to further obfuscate the JOP or methods can be

developed to better increase the security of the dual hardware.

Research to further increase SCA security of the JOP can be done to find new

methods to obfuscate the vulnerabilities found in this thesis, or finding new vulner-

abilities. For example, one could look into changing the underlying structure of the

JOP into a Harvard Architecture and look into options for increase the security as

such. Additionally, research can be done to test for the effect on security of the

proposed countermeasures while a crypto-processor is running the Data Encryption

Standard (DES) cryptography algorithm.

Research to further the four double hardware outlined in this thesis could be done

to increase them to have more hardware units, for example to have a triple adder, or

split values three ways and employ a triple RAM. These results could be compared

and contrasted with the results of having only two hardware units. Furthermore,

research can be done to find other hardware units that would benefit from being

doubled.
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Appendix A. Java Modulo Exponentiation Functions

Listing A.1. ModPow(exponent, modulous)

1 public BigInteger modPow(BigInteger exponent , BigInteger m) {

if (m.signum <= 0)

throw new ArithmeticException("BigInteger: modulus not...

positive");

// Trivial cases

6 if (exponent.signum == 0)

return (m.equals(ONE) ? ZERO : ONE);

if (this.equals(ONE))

return (m.equals(ONE) ? ZERO : ONE);

11
if (this.equals(ZERO) && exponent.signum >= 0)

return ZERO;

if (this.equals(negConst [1]) && (! exponent.testBit (0)))

16 return (m.equals(ONE) ? ZERO : ONE);

boolean invertResult;

if (( invertResult = (exponent.signum < 0)))

exponent = exponent.negate ();

21
BigInteger base = (this.signum < 0 || this.compareTo(m) >=...

0

? this.mod(m) : this);

BigInteger result;

26

if (m.testBit (0)) { // odd modulus

result = base.oddModPow(exponent , m);

} else {

31 /*

* Even modulus. Tear it into an "odd part" (m1) and ...

power of two

* (m2), exponentiate mod m1, manually exponentiate ...

mod m2 , and

* use Chinese Remainder Theorem to combine results.

*/

36
// Tear m apart into odd part (m1) and power of 2 (m2)

int p = m.getLowestSetBit (); // Max pow of 2 that ...

divides m

41
BigInteger m1 = m.shiftRight(p); // m/2**p

BigInteger m2 = ONE.shiftLeft(p); // 2**p
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46 // Calculate new base from m1

BigInteger base2 = (this.signum < 0 || this.compareTo(...

m1) >= 0

? this.mod(m1) : this);

51
// Caculate (base ** exponent) mod m1.

BigInteger a1 = (m1.equals(ONE) ? ZERO :

base2.oddModPow(exponent , m1));

56 // Calculate (this ** exponent) mod m2

BigInteger a2 = base.modPow2(exponent , p);

61 // Combine results using Chinese Remainder Theorem

BigInteger y1 = m2.modInverse(m1);

BigInteger y2 = m1.modInverse(m2);

result = a1.multiply(m2).multiply(y1).add

66 (a2.multiply(m1).multiply(y2)).mod(m);

}

return (invertResult ? result.modInverse(m) : result);

}

Listing A.2. OddModPow(exponent, modulous)

/**

* Returns a BigInteger whose value is x to the power of y mod...

z.

* Assumes: z is odd && x < z.

*/

5 private BigInteger oddModPow(BigInteger y, BigInteger z) {

/*

* The algorithm is adapted from Colin Plumb ’s C library.

*

* The window algorithm:

10 * The idea is to keep a running product of b1 = n^(high -order...

bits of exp)

* and then keep appending exponent bits to it. The following...

patterns

* apply to a 3-bit window (k = 3):

* To append 0: square

* To append 1: square , multiply by n^1

15 * To append 10: square , multiply by n^1, square

* To append 11: square , square , multiply by n^3

* To append 100: square , multiply by n^1, square , square

* To append 101: square , square , square , multiply by n^5

* To append 110: square , square , multiply by n^3, square
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20 * To append 111: square , square , square , multiply by n^7

*

* Since each pattern involves only one multiply , the longer ...

the pattern

* the better , except that a 0 (no multiplies) can be appended...

directly.

* We precompute a table of odd powers of n, up to 2^k, and ...

can then

25 * multiply k bits of exponent at a time. Actually , assuming

* exponents , there is on average one zero bit between needs ...

to

* multiply (1/2 of the time there ’s none , 1/4 of the time ...

there ’s 1,

* 1/8 of the time , there ’s 2, 1/32 of the time , there ’s 3, ...

etc.), so

* you have to do one multiply per k+1 bits of exponent.

30 *

* The loop walks down the exponent , squaring the result ...

buffer as

* it goes. There is a wbits +1 bit lookahead buffer , buf , ...

that is

* filled with the upcoming exponent bits. (What is read ...

after the

* end of the exponent is unimportant , but it is filled with ...

zero here.)

35 * When the most -significant bit of this buffer becomes set , i...

.e.

* (buf & tblmask) != 0, we have to decide what pattern to ...

multiply

* by, and when to do it. We decide , remember to do it in ...

future

* after a suitable number of squarings have passed (e.g. a ...

pattern

* of "100" in the buffer requires that we multiply by n^1 ...

immediately;

40 * a pattern of "110" calls for multiplying by n^3 after one ...

more

* squaring), clear the buffer , and continue.

*

* When we start , there is one more optimization: the result ...

buffer

* is implcitly one , so squaring it or multiplying by it can ...

be

45 * optimized away. Further , if we start with a pattern like "...

100"

* in the lookahead window , rather than placing n into the ...

buffer

* and then starting to square it, we have already computed n...

^2

* to compute the odd -powers table , so we can place that into

* the buffer and save a squaring.

50 *
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* This means that if you have a k-bit window , to compute n^z,

* where z is the high k bits of the exponent , 1/2 of the time

* it requires no squarings. 1/4 of the time , it requires 1

* squaring , ... 1/2^(k-1) of the time , it reqires k-2 ...

squarings.

55 * And the remaining 1/2^(k-1) of the time , the top k bits are...

a

* 1 followed by k-1 0 bits , so it again only requires k-2

* squarings , not k-1. The average of these is 1. Add that

* to the one squaring we have to do to compute the table ,

* and you ’ll see that a k-bit window saves k-2 squarings

60 * as well as reducing the multiplies. (It actually doesn ’t

* hurt in the case k = 1, either .)

*/

// Special case for exponent of one

65

if (y.equals(ONE))

return this;

70 // Special case for base of zero

if (signum ==0)

return ZERO;

int[] base = new int[mag.length ];// mag.clone();

75
for(int i = 0; i<mag.length; i++)

base[i] = mag[i];

int[] exp = y.mag;

80 int[] mod = z.mag;

int modLen = mod.length;

85 // Select an appropriate window size

int wbits = 0;

int ebits = bitLength(exp , exp.length);

// if exponent is 65537 (0 x10001), use minimum window size

if (( ebits != 17) || (exp [0] != 65537)) {

90 while (ebits > bnExpModThreshTable[wbits ]) {

wbits ++;

}

}

95 // Calculate appropriate table size

int tblmask = 1 << wbits;

// Allocate table for precomputed odd powers of base in ...

Montgomery form

int [][] table = new int[tblmask ][];
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100 for (int i=0; i<tblmask; i++)

table[i] = new int[modLen ];

// Compute the modular inverse

int inv = -MutableBigInteger.inverseMod32(mod[modLen -1]);

105
// Convert base to Montgomery form

int[] a = leftShift(base , base.length , modLen << 5);

MutableBigInteger q = new MutableBigInteger (),

110 a2 = new MutableBigInteger(a),

b2 = new MutableBigInteger(mod);

MutableBigInteger r = a2.divide(b2, q);

table [0] = r.toIntArray ();

115
// Pad table [0] with leading zeros so its length is at ...

least modLen

if (table [0]. length < modLen) {

int offset = modLen - table [0]. length;

int[] t2 = new int[modLen ];

120 for (int i=0; i<table [0]. length; i++)

t2[i+offset] = table [0][i];

table [0] = t2;

}

125 // Set b to the square of the base

int[] b = squareToLen(table[0], modLen , null);

b = montReduce(b, mod , modLen , inv);

// Set t to high half of b

130 int[] t = new int[modLen ];

for(int i=0; i<modLen; i++)

t[i] = b[i];

// Fill in the table with odd powers of the base

135 for (int i=1; i<tblmask; i++) {

int[] prod = multiplyToLen(t, modLen , table[i-1], ...

modLen , null);

table[i] = montReduce(prod , mod , modLen , inv);

}

140 // Pre load the window that slides over the exponent

int bitpos = 1 << ((ebits -1) & (32-1));

int buf = 0;

int elen = exp.length;

145 int eIndex = 0;

for (int i = 0; i <= wbits; i++) {

buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0) ?1:0)...

;

bitpos >>>= 1;
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if (bitpos == 0) {

150 eIndex ++;

bitpos = 1 << (32 -1);

elen --;

}

}

155
int multpos = ebits;

// The first iteration , which is hoisted out of the main ...

loop

ebits --;

160 boolean isone = true;

multpos = ebits - wbits;

while ((buf & 1) == 0) {

buf >>>= 1;

165 multpos ++;

}

int[] mult = table[buf >>> 1];

170 buf = 0;

if (multpos == ebits)

isone = false;

// The main loop

175 while(true) {

ebits --;

// Advance the window

buf <<= 1;

180 if (elen != 0) {

buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;

bitpos >>>= 1;

if (bitpos == 0) {

eIndex ++;

185 bitpos = 1 << (32 -1);

elen --;

}

}

190 // Examine the window for pending multiplies

if ((buf & tblmask) != 0) {

multpos = ebits - wbits;

while ((buf & 1) == 0) {

buf >>>= 1;

195 multpos ++;

}

mult = table[buf >>> 1];

buf = 0;

}
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200
// Perform multiply

if (ebits == multpos) {

if (isone) {

b = new int[mult.length ];// mult.clone ();

205 for(int i = 0; i < mult....

length; i++)

b[i] = mult[i];

isone = false;

} else {

t = b;

210 a = multiplyToLen(t, modLen , mult , modLen , a);

a = montReduce(a, mod , modLen , inv);

t = a; a = b; b = t;

}

}

215
// Check if done

if (ebits == 0)

break;

220 // Square the input

if (!isone) {

t = b;

a = squareToLen(t, modLen , a);

a = montReduce(a, mod , modLen , inv);

225 t = a; a = b; b = t;

}

}

// Convert result out of Montgomery form and return

230 int[] t2 = new int[2* modLen ];

for(int i=0; i<modLen; i++)

t2[i+modLen] = b[i];

b = montReduce(t2 , mod , modLen , inv);

235
t2 = new int[modLen ];

for(int i=0; i<modLen; i++)

t2[i] = b[i];

240 return new BigInteger (1, t2);

}
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Appendix B. Java Software Implementations

Listing B.1. DAILMOM

library ieee;

use ieee.std_logic_1164.all;

entity and2 is

4 port(in1 , in2 : in std_logic;

out1 : out std_logic);

end and2;

architecture concurrent of and2 is

begin

9 out1 <= in1 and in2;

end concurrent;

library IEEE;

use IEEE.std_logic_1164.all;

14 use IEEE.std_logic_arith.all;

use IEEE.std_logic_signed.all;

entity telephone_booth is

generic ( n : integer := 32 );

port (b, upper_in , lower_in : in std_logic_vector(n-1 ...

downto 0);

19 upper_out , lower_out : out ...

std_logic_vector(n-1 downto 0);

operation : in ...

std_logic_vector( 1 ...

downto 0);

reset : in std_logic;

done : out std_logic);

end entity telephone_booth;

24
-- Behavioral model for an 8-bit Booth Multiplier component

architecture mult of telephone_booth is

signal upper : std_logic_vector(n-1 downto 0);

signal donev : std_logic := ’0’;

29 begin

process(b, upper_in , lower_in , operation , reset)

begin

if (reset = ’1’) then

donev <= ’0’;

34 else

if ( operation = "10" ) then -- from 0 to 1

upper <= upper_in - b; -- subtract ’b’ ...

from partial

elsif ( operation = "01" ) then -- from 1 to 0

upper <= upper_in + b; -- add ’b’ to ...

partial

39 else

upper <= upper_in;

end if; -- else operation = "00" or "11"

donev <= ’1’;
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end if;

44 end process;

lower_out <= upper (0) & lower_in(n-1 downto 1); -- shift ...

lower half right

upper_out <= upper(n-1) & upper(n-1 downto 1); -- shift ...

upper half right

done <= donev;

end architecture mult;

49
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_signed.all;

54
entity booth_mult is

generic ( n : integer := 32 );

port (ain , bin : in std_logic_vector ((2*n)-1 downto 0);

prod : out std_logic_vector ((4*n)-1 downto 0);

59 reset : in std_logic;

done: out std_logic );

end entity booth_mult;

-- Structural model for a 32-bit Booth Multiplier outputing a 64-...

bit result

64 architecture mult of booth_mult is

component telephone_booth is

generic ( n : integer := 32 );

port (b, upper_in , lower_in : in std_logic_vector(n-1 ...

downto 0);

69 upper_out , lower_out : out std_logic_vector(n-1...

downto 0);

operation : in ...

std_logic_vector( 1 ...

downto 0);

reset : in std_logic;

done...

...

:...

...

out...

...

std_logic...

...

)...

;...

end component;

74
component and2

port(in1 , in2: in std_logic;

out1: out std_logic);

94



www.manaraa.com

end component;

79
signal ain1 , ain2 , bin1 , bin2 : std_logic_vector(n-1 downto 0);

signal prod1 , prod2 : std_logic_vector ((2*n)-1 downto 0);

signal oper : std_logic_vector(n downto 0) := (others => ...

’0’);

84 signal im : std_logic_vector ((n*((2*(n))+2) -1) downto 0) := (...

others => ’0’);

signal donev : std_logic_vector(n downto 0) := (others => ’0’);

signal doneu : std_logic_vector(n downto 0) := (others => ’0’);

signal oper2 : std_logic_vector(n downto 0) := (others => ...

’0’);

89 signal im2 : std_logic_vector ((n*((2*(n))+2) -1) downto 0) := (...

others => ’0’);

signal donev2 : std_logic_vector(n downto 0) := (others => ’0’);

signal doneu2 : std_logic_vector(n downto 0) := (others => ’0’);

signal reset_values : std_logic := ’0’;

94
signal copy_bin1 , copy_bin2 , copy_ain1 , copy_ain2 : ...

std_logic_vector(n-1 downto 0) := (others => ’0’);

begin

99
make_in : FOR i IN 0 TO n-1 GENERATE

ain2(i) <= ain (2*i);

bin2(i) <= bin (2*i);

ain1(i) <= ain ((2*i)+1);

104 bin1(i) <= bin ((2*i)+1);

end generate;

109 loopy : FOR i IN 0 TO n-1 GENERATE

tboot1ton : telephone_booth generic map(n => 32)

port map ( b => bin1 ,

upper_in => im(((n*((2*i)+1)) -1) downto ((n*((2*i)...

+0)) -0)),

lower_in => im(((n*((2*i)+2)) -1) downto ((n*((2*i)...

+1)) -0)),

114 upper_out => im((n*((2*(i+1))+1) -1) downto (n*((2*(i...

+1))+0) -0)),

lower_out => im((n*((2*(i+1))+2) -1) downto (n*((2*(i...

+1))+1) -0)),

operation => oper(i+1 downto i),

reset => reset_values ,

done => donev(i));

119
END GENERATE;
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loopy2 : FOR i IN 0 TO n-1 GENERATE

tboot1ton2 : telephone_booth generic map(n => 32)

124 port map ( b => bin2 ,

upper_in => im2(((n*((2*i)+1)) -1) downto ((n*((2*i)...

+0)) -0)),

lower_in => im2(((n*((2*i)+2)) -1) downto ((n*((2*i)...

+1)) -0)),

upper_out => im2((n*((2*(i+1))+1) -1) downto (n*((2*(...

i+1))+0) -0)),

lower_out => im2((n*((2*(i+1))+2) -1) downto (n*((2*(...

i+1))+1) -0)),

129 operation => oper2(i+1 downto i),

reset => reset_values ,

done => donev2(i));

END GENERATE;

134
doneu (0) <= ’1’;

doneu2 (0) <= ’1’;

done_loopy : FOR i IN 0 TO n-1 GENERATE

139 doneintermediate : and2 port map (in1 => doneu(i), in2 => donev(...

i), out1 => doneu(i+1));

end generate;

done_loopy2 : FOR i IN 0 TO n-1 GENERATE

doneintermediate2 : and2 port map (in1 => doneu2(i), in2 => ...

donev2(i), out1 => doneu2(i+1));

144 end generate;

done <= doneu(n) and doneu2(n);

process (bin2 , ain1 , ain2 , reset) is

149 begin

if (reset = ’1’ or copy_ain1 /= ain1 or copy_ain2 /= ain2)...

then

im(n*(2) -1 downto n*(1)) <= ain1;

im2(n*(2) -1 downto n*(1)) <= ain2;

154 oper <= ain1(n-1 downto 0) & ’0’;

oper2 <= ain2(n-1 downto 0) & ’0’;

reset_values <= ’1’;

copy_ain1 <= ain1;

copy_ain2 <= ain2;

159 else

reset_values <= ’0’;

copy_bin1 <= bin1;

copy_bin2 <= bin2;

end if;

164
end process;
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-- process (bin1 , bin2) is

-- begin

169 -- reset_values <= ’0’;

-- end process;

prod1 <= im((n*((2*(n))+1) -1) downto (n*((2*(n))+0) -0)) & ...

im((n*((2*(n))+2) -1) downto (n*((2*(n))+1) -0));

prod2 <= im2((n*((2*(n))+1) -1) downto (n*((2*(n))+0) -0)) & ...

im2((n*((2*(n))+2) -1) downto (n*((2*(n))+1) -0));

174

make_out_at_piano_bar : FOR i IN 0 TO ((2*n) -1) GENERATE

prod (2*i) <= prod2(i);

prod ((2*i)+1) <= prod1(i);

179 end generate;

end architecture mult;

Listing B.2. Main RCA definition

1 LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE WORK.ALL;

6 ENTITY add_8 IS

PORT(

x_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

y_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

c_in : IN STD_LOGIC;

11 sum : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);

c_out : OUT STD_LOGIC);

END add_8;

ARCHITECTURE struct OF add_8 IS

16

component full_add is

PORT(

a : IN STD_LOGIC;

21 b : IN STD_LOGIC;

c_in : IN STD_LOGIC;

sum : OUT STD_LOGIC;

c_out : OUT STD_LOGIC);

END component;

26
component carry is

PORT(

c_in : in std_logic;

c_out : out std_logic);
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31 end component;

SIGNAL im : STD_LOGIC_VECTOR (30 DOWNTO 0);

SIGNAL imi : STD_LOGIC_VECTOR (30 DOWNTO 0);

BEGIN

36 c0 : full_add

PORT MAP (x_in (0),y_in (0),c_in ,sum (0),im(0));

c01 : carry

PORT MAP (im(0),imi (0));

c : FOR i IN 1 TO 30 GENERATE

41 c1to6: full_add PORT MAP (x_in(i),y_in(i),

imi(i-1),sum(i),im(i));

c11to16: carry PORT MAP (im(i),imi(i));

END GENERATE;

c7 : full_add PORT MAP (x_in (31),y_in (31),

46 imi (30),sum (31),c_out);

END struct;

Listing B.3. Full Adder

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

3
use work.all;

entity full_add is

PORT(

8 a : IN STD_LOGIC;

b : IN STD_LOGIC;

c_in : IN STD_LOGIC;

sum : OUT STD_LOGIC;

c_out : OUT STD_LOGIC);

13 END full_add;

ARCHITECTURE behv OF full_add IS

BEGIN

sum <= a XOR b XOR c_in;

18 c_out <= (a AND b) OR (c_in AND (a OR b));

END behv;

Listing B.4. Carry

1 LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

use work.all;

6 entity carry is

PORT(

c_in : in STD_LOGIC;

c_out : out STD_LOGIC);

END carry;

11
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ARCHITECTURE behv OF carry IS

signal carry : std_logic;

BEGIN

16 carry <= c_in;

c_out <= carry;

END behv;

Listing B.5. Main CLA Adder definition

1 LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY c_l_addr IS

PORT

6 (

x_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

y_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

carry_in : IN STD_LOGIC;

sum : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);

11 carry_out : OUT STD_LOGIC

);

END c_l_addr;

ARCHITECTURE behavioral OF c_l_addr IS

16
SIGNAL h_sum : STD_LOGIC_VECTOR (31 DOWNTO 0);

SIGNAL carry_generate : STD_LOGIC_VECTOR (31 DOWNTO 0);

SIGNAL carry_propagate : STD_LOGIC_VECTOR (31 DOWNTO 0);

SIGNAL carry_in_internal : STD_LOGIC_VECTOR (31 DOWNTO 1);

21
BEGIN

h_sum <= x_in XOR y_in;

carry_generate <= x_in AND y_in;

carry_propagate <= x_in OR y_in;

26 PROCESS (carry_generate ,carry_propagate ,carry_in_internal)

BEGIN

carry_in_internal (1) <= carry_generate (0) OR (carry_propagate...

(0) AND carry_in);

inst: FOR i IN 1 TO 30 LOOP

carry_in_internal(i+1) <= carry_generate(i) OR (...

carry_propagate(i) AND carry_in_internal(i));

31 END LOOP;

carry_out <= carry_generate (31) OR (carry_propagate (31) AND ...

carry_in_internal (31));

END PROCESS;

sum(0) <= h_sum (0) XOR carry_in;

36 sum(31 DOWNTO 1) <= h_sum (31 DOWNTO 1) XOR carry_in_internal...

(31 DOWNTO 1);

END behavioral;
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Listing B.6. Math Driver Hardware

--

--

3 -- This file is a part of JOP , the Java Optimized Processor

--

-- Copyright (C) 2001 -2008 , Martin Schoeberl (martin@jopdesign....

com)

--

-- This program is free software: you can redistribute it and/or ...

modify

8 -- it under the terms of the GNU General Public License as ...

published by

-- the Free Software Foundation , either version 3 of the License ,...

or

-- (at your option) any later version.

--

-- This program is distributed in the hope that it will be useful...

,

13 -- but WITHOUT ANY WARRANTY; without even the implied warranty of

-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

-- GNU General Public License for more details.

--

-- You should have received a copy of the GNU General Public ...

License

18 -- along with this program. If not , see <http :// www.gnu.org/...

licenses/>.

--

--

23 -- sc_test_slave.vhd

--

-- A simple test slave for the SimpCon interface

--

-- Author: Martin Schoeberl martin@jopdesign.com

28 --

--

-- resources on Cyclone

--

-- xx LCs , max xx MHz

33 --

--

-- 2005 -11 -29 first version

--

-- todo:

38 --

--

library ieee;

43 use ieee.std_logic_1164.all;

use ieee.numeric_std.all;
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entity sc_math is

generic (addr_bits : integer);

48
port (

clk : in std_logic;

reset : in std_logic;

53 -- SimpCon interface

address : in std_logic_vector(addr_bits -1 downto ...

0);

wr_data : in std_logic_vector (31 downto 0);

rd , wr : in std_logic;

58 rd_data : out std_logic_vector (31 downto 0);

rdy_cnt : out unsigned (1 downto 0)

);

end sc_math;

63
architecture rtl of sc_math is

component c_l_addr IS

PORT

68 (

x_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

y_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

carry_in : IN STD_LOGIC;

sum : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);

73 carry_out : OUT STD_LOGIC

);

END component;

component add_8 IS

78 PORT(

x_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

y_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

c_in : IN STD_LOGIC;

sum : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);

83 c_out : OUT STD_LOGIC);

END component;

component booth_mult is

generic ( n : integer := 32 );

88 port (ain , bin : in std_logic_vector ((2*n)-1 downto 0);

prod : out std_logic_vector ((4*n)-1 downto 0);

reset : in std_logic;

done: out std_logic );

end component;

93

signal sum1 : std_logic_vector (31 ...
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downto 0);

signal a1 : std_logic_vector (31 ...

downto 0); -- := "00000000000000000000000000011010";

signal b1 : std_logic_vector (31 ...

downto 0); -- := "00000000000000000000000000001101";

98 signal c_o1 : std_logic;

signal sum2 : std_logic_vector (31 ...

downto 0);

signal a2 : std_logic_vector (31 ...

downto 0); -- := "00000000000000000000000000011010";

signal b2 : std_logic_vector (31 ...

downto 0); -- := "00000000000000000000000000001101";

103 signal c_o2 : std_logic;

signal ain , bin : std_logic_vector (63 downto 0);

signal prod : std_logic_vector (127 downto 0);

signal reset_booth : std_logic;

108 signal done: std_logic ;

begin

ad : c_l_addr port map (a1 ,b1 ,’0’,sum1 ,c_o1);

113 ad2 : add_8 port map (a2 ,b2 ,’0’,sum2 ,c_o2);

bm : booth_mult port map (ain , bin , prod , reset_booth , done);

--

-- The registered MUX is all we need for a SimpCon read.

118 -- The read data is stored in registered rd_data.

--

process(clk , reset)

begin

123 if (reset=’1’) then

rd_data <= (others => ’0’);

elsif rising_edge(clk) then

if rd=’1’ then

128 -- that ’s our very simple address decoder

case address (3 downto 0) is

when "0000" =>

rd_data <= sum1;

when "0001" =>

133 rd_data <= sum2;

when "0010" =>

rd_data <= prod (127 downto...

96);

when "0011" =>

rd_data <= prod (95 downto ...

64);

138 when "0100" =>

rd_data <= prod (63 downto ...
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32);

when "0101" =>

rd_data <= prod (31 downto ...

0);

when "0110" =>

143 rd_data (31 downto 1) <= (...

others => ’0’);

rd_data (0) <= done;

when others =>

rd_data (31 downto 0) <= (...

others => ’0’);

end case;

148 end if;

end if;

end process;

153
--

-- SimpCon write is very simple

--

process(clk , reset)

158
begin

if (reset=’1’) then

a1 <= (others => ’0’);

163 b1 <= (others => ’0’);

a2 <= (others => ’0’);

b2 <= (others => ’0’);

ain <= (others => ’0’);

bin <= (others => ’0’);

168
elsif rising_edge(clk) then

if wr=’1’ then

case address (3 downto 0) is

when "0000" =>

173 a1 <= wr_data;

when "0001" =>

b1 <= wr_data;

when "0010" =>

a2 <= wr_data;

178 when "0011" =>

b2 <= wr_data;

when "0100" =>

ain (63 downto 32) <= ...

wr_data;

when "0101" =>

183 ain (31 downto 0) <= ...

wr_data;

when "0110" =>

bin (63 downto 32) <= ...
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wr_data;

when "0111" =>

bin (31 downto 0) <= ...

wr_data;

188 when others =>

end case;

end if;

193 end if;

end process;

end rtl;

Listing B.7. Assembler code override

// moved to jvm.java

3 //iadd: add nxt

// moved to jvm.java

//imul:

// stmul // store both operands and...

start

8 // pop // pop second ...

operand

// ldi 2 // 2*7+2 wait ok!

// imul_loop:

// ldi -1

13 // add

// dup

// nop

// bnz imul_loop

// nop

18 // nop

// pop // remove counter

// ldmul nxt

Listing B.8. Assembler code override

1 private static int add_op = 1;

private static int f_iadd(int a, int b) {

if (add_op == 1){

add_op = 2;

6 Native.wr(a, Const.IO_ADD_1_a);

Native.wr(b, Const.IO_ADD_1_b);

return Native.rd(Const.IO_ADD_1);

}
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else {

11 add_op = 1;

Native.wr(a, Const.IO_ADD_2_a);

Native.wr(b, Const.IO_ADD_2_b);

return Native.rd(Const.IO_ADD_2);

}

16
}

private static int mult_op = 1;

21 private static int f_imul(int a, int b) {

int confound_a;

int confound_b;

26
if (mult_op == 1) {

confound_a = 0xAAAA0000;

confound_b = 0xAAAAAAAA;

mult_op ++;

31 }

else if (mult_op == 2) {

confound_a = 0x0000AAAA;

confound_b = 0xAAAAAAAA;

mult_op ++;

36 }

else if (mult_op == 3) {

confound_a = 0xAA0000AA;

confound_b = 0xAAAAAAAA;

mult_op ++;

41 }

else if (mult_op == 4) {

confound_a = 0x00AAAA00;

confound_b = 0xAAAAAAAA;

mult_op ++;

46 }

else if (mult_op == 4) {

confound_a = 0x00000000;

confound_b = 0xAAAAAAAA;

mult_op ++;

51 }

else {

confound_a = 0xAAAAAAAA;

confound_b = 0xAAAAAAAA;

mult_op = 1;

56 }

61
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int a_temp = a >>16;

int b_temp = confound_a >>16;

int c_high = 0x0;

66
for (int i = 31; i >= 0; i--){

if ((((i-1) >>1) == (i>>1))...

&& (i != 0)){

c_high=c_high +((((...

a_temp >>(i>>1))...

&0x1))<<(i));

71 }

else{

c_high=c_high +((((...

b_temp >>(i>>1))...

&0x1))<<(i));

}

}

76

a_temp = (a & 0xffff);

b_temp = (confound_a & 0xffff);

int c_low = 0x0;

81

for (int i = 31; i >= 0; i--){

if ((((i-1) >>1) == (i>>1))...

&& (i != 0)){

86 c_low=c_low +((((...

a_temp >>(i>>1))...

&0x1))<<(i));

}

else{

c_low=c_low +((((...

b_temp >>(i>>1))...

&0x1))<<(i));

}

91 }

a_temp = b >>16;

b_temp = confound_b >>16;

96 int d_high = 0x0;

for (int i = 31; i >= 0; i--){

101 if ((((i-1) >>1) == (i>>1))...

&& (i != 0)){

d_high=d_high +((((...
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a_temp >>(i>>1))...

&0x1))<<(i));

}

else{

d_high=d_high +((((...

b_temp >>(i>>1))...

&0x1))<<(i));

106 }

}

a_temp = (b & 0xffff);

111 b_temp = (confound_b & 0xffff);

int d_low = 0x0;

for (int i = 31; i >= 0; i--){

116
if ((((i-1) >>1) == (i>>1))...

&& (i != 0)){

d_low=d_low +((((...

a_temp >>(i>>1))...

&0x1))<<(i));

}

else{

121 d_low=d_low +((((...

b_temp >>(i>>1))...

&0x1))<<(i));

}

}

Native.wr(c_high ,Const.IO_MULT_a1)...

;

126 Native.wr(c_low ,Const.IO_MULT_a2);

Native.wr(d_high ,Const.IO_MULT_b1)...

;

Native.wr(d_low ,Const.IO_MULT_b2);

while(Native.rd(Const....

IO_MULT_done)==0);

131
// int returned1 = Native.rd(Const....

IO_MULT_1);

// int returned2 = Native.rd(Const....

IO_MULT_2);

int returned3 = Native.rd(Const....

IO_MULT_3);

int returned4 = Native.rd(Const....

IO_MULT_4);

136
// int val_a_high = 0x0;

int val_a_low = 0x0;
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// int val_b_high = 0x0;

// int val_b_low = 0x0;

141
// for (int i = 31; i >= 0; i--){

// if (i>>1 == (i-1) >>1)

// val_a_high = ...

val_a_high + ((returned1 >>(i)&0x1) <<((i>>1)+16));

// else //if (i>>1 != (i-1)...

>>1)

146 // val_b_high = ...

val_b_high + ((returned1 >>(i)&0x1) <<((i>>1)+16));

// }

// for (int i = 31; i >= 0; i--){

// if (i>>1 == (i-1) >>1)

151 // val_a_high = ...

val_a_high + ((returned2 >>(i)&0x1) <<((i>>1)));

// else

// val_b_high = ...

val_b_high + ((returned2 >>(i)&0x1) <<((i>>1)));

// }

156
for (int i = 31; i >= 0; i--){

if (i>>1 == (i-1) >>1)

val_a_low = ...

val_a_low + ((...

returned3 >>(i)...

&0x1) <<((i>>1)...

+16));

// else //if (i>>1 != (i-1)...

>>1)

161 // val_b_low = ...

val_b_low + ((returned3 >>(i)&0x1) <<((i>>1)+16));

}

for (int i = 31; i >= 0; i--){

if (i>>1 == (i-1) >>1)

166 val_a_low = ...

val_a_low + ((...

returned4 >>(i)...

&0x1) <<((i>>1))...

);

// else

// val_b_low = ...

val_b_low + ((returned4 >>(i)&0x1) <<((i>>1)));

}

171 return val_a_low;

}
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Listing B.9. JOP Port Definitions

// addres

//read

public static final int IO_ADD_1 = IO_BASE + 0x50 + 0;

5 public static final int IO_ADD_2 = IO_BASE + 0x50 + 1;

public static final int IO_MULT_1 = IO_BASE + 0x50 + 2;

public static final int IO_MULT_2 = IO_BASE + 0x50 + 3;

public static final int IO_MULT_3 = IO_BASE + 0x50 + 4;

public static final int IO_MULT_4 = IO_BASE + 0x50 + 5;

10 public static final int IO_MULT_done = IO_BASE + 0x50 + 6;

// write

public static final int IO_ADD_1_a = IO_BASE + 0x50 + 0;

15 public static final int IO_ADD_1_b = IO_BASE + 0x50 + 1;

public static final int IO_ADD_2_a = IO_BASE + 0x50 + 2;

public static final int IO_ADD_2_b = IO_BASE + 0x50 + 3;

public static final int IO_MULT_a1 = IO_BASE + 0x50 + 4;

public static final int IO_MULT_a2 = IO_BASE + 0x50 + 5;

20 public static final int IO_MULT_b1 = IO_BASE + 0x50 + 6;

public static final int IO_MULT_b2 = IO_BASE + 0x50 + 7;
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Appendix C. Java Software Implementations

Listing C.1. Main AES control class

package test;

2 import com.jopdesign.sys.Const;

import com.jopdesign.sys.Native;

public class AES_main_independant {

7 static int S_Box [][] = {

{0x63 , 0x7c , 0x77 , 0x7b , 0xf2 , 0x6b , 0x6f , 0xc5 , 0...

x30 , 0x01 , 0x67 , 0x2b , 0xfe , 0xd7 , 0xab , 0x76},

{0xca , 0x82 , 0xc9 , 0x7d , 0xfa , 0x59 , 0x47 , 0xf0 , 0...

xad , 0xd4 , 0xa2 , 0xaf , 0x9c , 0xa4 , 0x72 , 0xc0},

{0xb7 , 0xfd , 0x93 , 0x26 , 0x36 , 0x3f , 0xf7 , 0xcc , 0...

x34 , 0xa5 , 0xe5 , 0xf1 , 0x71 , 0xd8 , 0x31 , 0x15},

{0x04 , 0xc7 , 0x23 , 0xc3 , 0x18 , 0x96 , 0x05 , 0x9a , 0...

x07 , 0x12 , 0x80 , 0xe2 , 0xeb , 0x27 , 0xb2 , 0x75},

12 {0x09 , 0x83 , 0x2c , 0x1a , 0x1b , 0x6e , 0x5a , 0xa0 , 0...

x52 , 0x3b , 0xd6 , 0xb3 , 0x29 , 0xe3 , 0x2f , 0x84},

{0x53 , 0xd1 , 0x00 , 0xed , 0x20 , 0xfc , 0xb1 , 0x5b , 0...

x6a , 0xcb , 0xbe , 0x39 , 0x4a , 0x4c , 0x58 , 0xcf},

{0xd0 , 0xef , 0xaa , 0xfb , 0x43 , 0x4d , 0x33 , 0x85 , 0...

x45 , 0xf9 , 0x02 , 0x7f , 0x50 , 0x3c , 0x9f , 0xa8},

{0x51 , 0xa3 , 0x40 , 0x8f , 0x92 , 0x9d , 0x38 , 0xf5 , 0...

xbc , 0xb6 , 0xda , 0x21 , 0x10 , 0xff , 0xf3 , 0xd2},

{0xcd , 0x0c , 0x13 , 0xec , 0x5f , 0x97 , 0x44 , 0x17 , 0...

xc4 , 0xa7 , 0x7e , 0x3d , 0x64 , 0x5d , 0x19 , 0x73},

17 {0x60 , 0x81 , 0x4f , 0xdc , 0x22 , 0x2a , 0x90 , 0x88 , 0...

x46 , 0xee , 0xb8 , 0x14 , 0xde , 0x5e , 0x0b , 0xdb},

{0xe0 , 0x32 , 0x3a , 0x0a , 0x49 , 0x06 , 0x24 , 0x5c , 0...

xc2 , 0xd3 , 0xac , 0x62 , 0x91 , 0x95 , 0xe4 , 0x79},

{0xe7 , 0xc8 , 0x37 , 0x6d , 0x8d , 0xd5 , 0x4e , 0xa9 , 0...

x6c , 0x56 , 0xf4 , 0xea , 0x65 , 0x7a , 0xae , 0x08},

{0xba , 0x78 , 0x25 , 0x2e , 0x1c , 0xa6 , 0xb4 , 0xc6 , 0...

xe8 , 0xdd , 0x74 , 0x1f , 0x4b , 0xbd , 0x8b , 0x8a},

{0x70 , 0x3e , 0xb5 , 0x66 , 0x48 , 0x03 , 0xf6 , 0x0e , 0...

x61 , 0x35 , 0x57 , 0xb9 , 0x86 , 0xc1 , 0x1d , 0x9e},

22 {0xe1 , 0xf8 , 0x98 , 0x11 , 0x69 , 0xd9 , 0x8e , 0x94 , 0...

x9b , 0x1e , 0x87 , 0xe9 , 0xce , 0x55 , 0x28 , 0xdf},

{0x8c , 0xa1 , 0x89 , 0x0d , 0xbf , 0xe6 , 0x42 , 0x68 , 0...

x41 , 0x99 , 0x2d , 0x0f , 0xb0 , 0x54 , 0xbb , 0x16}

};

27 //byte [][] key_square = {{( byte)0x2b ,(byte)0x7e ,(byte)0x15...

,(byte)0x16},{(byte)0x28 ,(byte)0xae ,(byte)0xd2 ,(byte)0...

xa6},{(byte)0xab ,(byte)0xf7 ,(byte)0x15 ,(byte)0x88},{(...

byte)0x09 ,(byte)0xcf ,(byte)0x4f ,(byte)0x3c }};

static byte [][] key_square = {{( byte)0x00 ,(byte)0x11 ,(byte...

)0x22 ,(byte)0x33},{(byte)0x44 ,(byte)0x55 ,(byte)0x66 ,(...
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byte)0x77},{(byte)0x88 ,(byte)0x99 ,(byte)0xaa ,(byte)0xbb...

},{(byte)0xcc ,(byte)0xdd ,(byte)0xee ,(byte)0xff }};

byte [][] state = new byte [4][4]; // plaintext will ...

copy to here

static byte [][] mixCol = {{2,3,1,1}, {1,2,3,1}, {1,1,2,3},...

{3,1,1,2}};

32
byte[] result = new byte [16];

byte [][] newState = new byte [4][4];

byte [][] tempSt = new byte [4][4];

37 byte temp;

byte [][] row1 = new byte [11][4];

byte [][] row2 = new byte [11][4];

byte [][] row3 = new byte [11][4];

42 byte [][] row4 = new byte [11][4];

byte [][] current_keyex = new byte [4][4];

47 public byte[] get_r_done(byte[] plain){

for (int j = 0; j < 4; j++)

for(int pop = 0; pop < 4; pop++)

this.state[pop][j] = plain [(4*j)+...

pop];

52

//////////////////////////////////////////////

row1 [0] = key_square [0];

57 row2 [0] = key_square [1];

row3 [0] = key_square [2];

row4 [0] = key_square [3];

byte [][] key1 = key_square;

62 byte [][] key2 = new byte [4][4];

byte[] rotword = new byte [4];

byte[] recon = {0x01 ,0x02 ,0x04 ,0x08 ,0x10 ,0x20 ,0x40...

,(byte)0x80 ,0x1b ,0x36};

67 for (int i = 1; i< 11; i++){

rotword [0] = (byte)S_Box[(key1 [3][1] > >4)&0xf][key1...

[3][1]&0 xf];

rotword [1] = (byte)S_Box[(key1 [3][2] > >4)&0xf][key1...

[3][2]&0 xf];

rotword [2] = (byte)S_Box[(key1 [3][3] > >4)&0xf][key1...

[3][3]&0 xf];
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72 rotword [3] = (byte)S_Box[(key1 [3][0] > >4)&0xf][key1...

[3][0]&0 xf];

key2 [0][0] = (byte)(key1 [0][0]^ rotword [0]^ recon[i...

-1]);

key2 [0][1] = (byte)(key1 [0][1]^ rotword [1]);

key2 [0][2] = (byte)(key1 [0][2]^ rotword [2]);

77 key2 [0][3] = (byte)(key1 [0][3]^ rotword [3]);

key2 [1][0] = (byte)(key1 [1][0]^ key2 [0][0]);

key2 [1][1] = (byte)(key1 [1][1]^ key2 [0][1]);

key2 [1][2] = (byte)(key1 [1][2]^ key2 [0][2]);

82 key2 [1][3] = (byte)(key1 [1][3]^ key2 [0][3]);

key2 [2][0] = (byte)(key1 [2][0]^ key2 [1][0]);

key2 [2][1] = (byte)(key1 [2][1]^ key2 [1][1]);

key2 [2][2] = (byte)(key1 [2][2]^ key2 [1][2]);

87 key2 [2][3] = (byte)(key1 [2][3]^ key2 [1][3]);

key2 [3][0] = (byte)(key1 [3][0]^ key2 [2][0]);

key2 [3][1] = (byte)(key1 [3][1]^ key2 [2][1]);

key2 [3][2] = (byte)(key1 [3][2]^ key2 [2][2]);

92 key2 [3][3] = (byte)(key1 [3][3]^ key2 [2][3]);

System.arraycopy(key2[0], 0, row1[i], 0, 4);

System.arraycopy(key2[1], 0, row2[i], 0, 4);

97 System.arraycopy(key2[2], 0, row3[i], 0, 4);

System.arraycopy(key2[3], 0, row4[i], 0, 4);

key1 = key2;

102 }

////////////////////////////////////////////////

107

// this.addRoundKey(this.state , 0);

current_keyex [0] = row1 [0];

current_keyex [1] = row2 [0];

112 current_keyex [2] = row3 [0];

current_keyex [3] = row4 [0];

for(int j = 0; j<4; j++){

for(int i = 0; i<4; i++){

117 state[i][j] = (byte) (...

current_keyex[j][i] ^ state[i][...

j]);

}

}
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122 Native.wr(0x01 , Const.IO_LED5);

for(int round = 1; round < 10; round ++){

// this.state = this.subBytes(this.state);

127 for (int j = 0; j < 4; j++)

for(int dog = 0; dog < 4; dog++)

state[dog][j] = (byte)...

S_Box [(state[dog][j...

]>>4)&0xf][ state[dog][j...

]&0xf];

132

// this.shiftRows(this.state);

temp = state [1][0];

for(int star = 0; star <3; star ++){

137 state [1][ star] = state [1][ star +1];

}

state [1][3] = temp;

temp = state [2][0];

byte temp1 = state [2][1];

142 for(int moon = 0; moon <2; moon ++){

state [2][ moon] = state [2][ moon +2];

}

state [2][3] = temp1;

state [2][2] = temp;

147 temp = state [3][0];

temp1 = state [3][1];

byte temp2 = state [3][2];

byte temp3 = state [3][3];

state [3][0] = temp3;

152 state [3][1] = temp;

state [3][2] = temp1;

state [3][3] = temp2;

157

// this.mixColumns(this.state);

for(int red = 0; red <4; red++){

162 tempSt [0][ red] = (byte) ((this.shifty(...

state [0][ red], 2))^(this.shifty(state...

[1][ red], 3))^state [2][ red]^ state [3][...

red]);

tempSt [1][ red] = (byte) (state [0][ red]^...

this.shifty(state [1][ red], 2)^this....

shifty(state [2][ red], 3)^ state [3][ red...
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]);

tempSt [2][ red] = (byte) (state [0][ red]^...

state [1][ red]^this.shifty(state [2][ red...

],2)^this.shifty(state [3][ red], 3));

tempSt [3][ red] = (byte) (this.shifty(state...

[0][ red], 3)^state [1][ red]^ state [2][ red...

]^this.shifty(state [3][ red], 2));

}

167
System.arraycopy(tempSt [0], 0, state[0], 0, 4);

System.arraycopy(tempSt [1], 0, state[1], 0, 4);

System.arraycopy(tempSt [2], 0, state[2], 0, 4);

System.arraycopy(tempSt [3], 0, state[3], 0, 4);

172

// this.addRoundKey(this.state , round...

);

current_keyex [0] = row1[round ];

current_keyex [1] = row2[round ];

177 current_keyex [2] = row3[round ];

current_keyex [3] = row4[round ];

for(int j = 0; j<4; j++)

182 for(int i = 0; i<4; i++)

state[i][j] = (byte) (...

current_keyex[j][i] ^ state[i][...

j]);

}

187
if (true)

Native.wr(0x00 , Const.IO_LED5);

192

// this.state = this.subBytes(this.state);

for (int j = 0; j < 4; j++)

for(int dog = 0; dog < 4; dog++)

197 state[dog][j] = (byte)S_Box [(state...

[dog][j]>>4)&0xf][state[dog][j...

]&0xf];

// this.shiftRows(this.state);

temp = state [1][0];

202 for(int star = 0; star <3; star ++){

state [1][ star] = state [1][ star +1];

}

state [1][3] = temp;
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temp = state [2][0];

207 byte temp1 = state [2][1];

for(int moon = 0; moon <2; moon ++){

state [2][ moon] = state [2][ moon +2];

}

state [2][3] = temp1;

212 state [2][2] = temp;

temp = state [3][0];

temp1 = state [3][1];

byte temp2 = state [3][2];

byte temp3 = state [3][3];

217 state [3][0] = temp3;

state [3][1] = temp;

state [3][2] = temp1;

state [3][3] = temp2;

222

// this.addRoundKey(this.state , 0);

current_keyex [0] = row1 [10];

current_keyex [1] = row2 [10];

227 current_keyex [2] = row3 [10];

current_keyex [3] = row4 [10];

for(int j = 0; j<4; j++)

for(int i = 0; i<4; i++)

state[i][j] = (byte) (...

current_keyex[j][i] ^ state[i][...

j]);

232

// return this.return_state ();

237 for(int j = 0; j<4; j++)

for(int pop = 0; pop < 4; pop++)

result [(j*4)+pop] = this.state[pop...

][j];

242 return result;

}

247
public byte shifty(byte a, int b){

byte mod = 27;

if(b==2){

if(a < 0){

252 a = (byte) (a << 1);

a = (byte) (a^mod);

}
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else a = (byte)(a<<1);

}

257
else if(b==3){

byte tempA = a;

if(a<0){

a = (byte) (a << 1);

262 a = (byte) (a^mod);

a = (byte)(a^tempA);

}

else {

a = (byte)((a<<1)^tempA);

267 }

}

return a;

}

272

277

282

}
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Appendix D. Double Stack

Listing D.1. Double Stack

--

-- xv4ram_block.vhd

--

-- Generated by BlockGen

5 -- Mon Jan 17 12:50:45 EST 2011

--

-- This module will synthesize on Spartan3 and Virtex2 /2Pro/2ProX ...

devices.

--

10 library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

library unisim;

15 use unisim.vcomponents.all;

entity xram_block_double_ram is

port (

a_rst : in std_logic;

20 a_clk : in std_logic;

a_en : in std_logic;

a_wr : in std_logic;

a_addr : in std_logic_vector (8 downto 0);

a_din1 : in std_logic_vector (31 downto 0);

25 a_din2 : in std_logic_vector (31 downto 0);

a_dout1 : out std_logic_vector (31 downto 0);

a_dout2 : out std_logic_vector (31 downto 0);

b_rst : in std_logic;

b_clk : in std_logic;

30 b_en : in std_logic;

b_wr : in std_logic;

b_addr : in std_logic_vector (8 downto 0);

b_din1 : in std_logic_vector (31 downto 0);

b_din2 : in std_logic_vector (31 downto 0);

35 b_dout1 : out std_logic_vector (31 downto 0);

b_dout2 : out std_logic_vector (31 downto 0)

);

end xram_block_double_ram;

40 architecture rtl of xram_block_double_ram is

component RAMB16_S36_S36

port (

DIA : in std_logic_vector (31 downto 0)...

;

45 DIB : in std_logic_vector (31 downto 0)...

;
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ENA : in std_logic;

ENB : in std_logic;

WEA : in std_logic;

WEB : in std_logic;

50 SSRA : in std_logic;

SSRB : in std_logic;

DIPA : in std_logic_vector (3 downto 0);

DIPB : in std_logic_vector (3 downto 0);

DOPA : out std_logic_vector (3 downto 0)...

;

55 DOPB : out std_logic_vector (3 downto 0)...

;

CLKA : in std_logic;

CLKB : in std_logic;

ADDRA : in std_logic_vector (8 downto 0);

ADDRB : in std_logic_vector (8 downto 0);

60 DOA : out std_logic_vector (31 downto ...

0);

DOB : out std_logic_vector (31 downto ...

0)

);

end component;

65 attribute INIT: string;

attribute INIT_00: string;

attribute INIT_01: string;

attribute INIT_02: string;

attribute INIT_03: string;

70 attribute INIT_04: string;

attribute INIT_05: string;

attribute INIT_06: string;

attribute INIT_07: string;

attribute INIT_08: string;

75 attribute INIT_09: string;

attribute INIT_0a: string;

attribute INIT_0b: string;

attribute INIT_0c: string;

attribute INIT_0d: string;

80 attribute INIT_0e: string;

attribute INIT_0f: string;

attribute INIT_10: string;

attribute INIT_11: string;

attribute INIT_12: string;

85 attribute INIT_13: string;

attribute INIT_14: string;

attribute INIT_15: string;

attribute INIT_16: string;

attribute INIT_17: string;

90 attribute INIT_18: string;

attribute INIT_19: string;

attribute INIT_1a: string;

attribute INIT_1b: string;
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attribute INIT_1c: string;

95 attribute INIT_1d: string;

attribute INIT_1e: string;

attribute INIT_1f: string;

attribute INIT_20: string;

attribute INIT_21: string;

100 attribute INIT_22: string;

attribute INIT_23: string;

attribute INIT_24: string;

attribute INIT_25: string;

attribute INIT_26: string;

105 attribute INIT_27: string;

attribute INIT_28: string;

attribute INIT_29: string;

attribute INIT_2a: string;

attribute INIT_2b: string;

110 attribute INIT_2c: string;

attribute INIT_2d: string;

attribute INIT_2e: string;

attribute INIT_2f: string;

attribute INIT_30: string;

115 attribute INIT_31: string;

attribute INIT_32: string;

attribute INIT_33: string;

attribute INIT_34: string;

attribute INIT_35: string;

120 attribute INIT_36: string;

attribute INIT_37: string;

attribute INIT_38: string;

attribute INIT_39: string;

attribute INIT_3a: string;

125 attribute INIT_3b: string;

attribute INIT_3c: string;

attribute INIT_3d: string;

attribute INIT_3e: string;

attribute INIT_3f: string;

130
attribute INIT_00 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_01 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_02 of cmp_ram_0: label is "...

1234567800000000000000000000000000000000000000000000000000000000...

";

attribute INIT_03 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

135 attribute INIT_04 of cmp_ram_0: label is "...

ffffff9100000002ffffff900000000400000000ffffff87ffffff8600000040...

";
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attribute INIT_05 of cmp_ram_0: label is "0000001...

fffffff84000000050000000300000006000000ff0000000100000008...

";

attribute INIT_06 of cmp_ram_0: label is "...

ffffff8f000000200000003f80000000ffffff85ffffff800000ffffffffffff...

";

attribute INIT_07 of cmp_ram_0: label is "000000000132...

b548123456781234567812345678123456781234567812345678";

attribute INIT_08 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

140 attribute INIT_09 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0a of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0b of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0c of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0d of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

145 attribute INIT_0e of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0f of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_10 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_11 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_12 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

150 attribute INIT_13 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_14 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_15 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_16 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...
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";

attribute INIT_17 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

155 attribute INIT_18 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_19 of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1a of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1b of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1c of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

160 attribute INIT_1d of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1e of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1f of cmp_ram_0: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_20 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_21 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

165 attribute INIT_22 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_23 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_24 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_25 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_26 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

170 attribute INIT_27 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";
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attribute INIT_28 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_29 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2a of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2b of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

175 attribute INIT_2c of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2d of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2e of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2f of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_30 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

180 attribute INIT_31 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_32 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_33 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_34 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_35 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

185 attribute INIT_36 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_37 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_38 of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_39 of cmp_ram_0: label is "...
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0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3a of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

190 attribute INIT_3b of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3c of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3d of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3e of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3f of cmp_ram_0: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

195
attribute INIT_00 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_01 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_02 of cmp_ram_1: label is "...

1234567800000000000000000000000000000000000000000000000000000000...

";

attribute INIT_03 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

200 attribute INIT_04 of cmp_ram_1: label is "...

ffffff9100000002ffffff900000000400000000ffffff87ffffff8600000040...

";

attribute INIT_05 of cmp_ram_1: label is "0000001...

fffffff84000000050000000300000006000000ff0000000100000008...

";

attribute INIT_06 of cmp_ram_1: label is "...

ffffff8f000000200000003f80000000ffffff85ffffff800000ffffffffffff...

";

attribute INIT_07 of cmp_ram_1: label is "000000000132...

b548123456781234567812345678123456781234567812345678";

attribute INIT_08 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

205 attribute INIT_09 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0a of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

123



www.manaraa.com

";

attribute INIT_0b of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0c of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0d of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

210 attribute INIT_0e of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_0f of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_10 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_11 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_12 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

215 attribute INIT_13 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_14 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_15 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_16 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_17 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

220 attribute INIT_18 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_19 of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1a of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1b of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";
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attribute INIT_1c of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

225 attribute INIT_1d of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1e of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_1f of cmp_ram_1: label is "...

1234567812345678123456781234567812345678123456781234567812345678...

";

attribute INIT_20 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_21 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

230 attribute INIT_22 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_23 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_24 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_25 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_26 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

235 attribute INIT_27 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_28 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_29 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2a of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2b of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

240 attribute INIT_2c of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2d of cmp_ram_1: label is "...
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0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2e of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_2f of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_30 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

245 attribute INIT_31 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_32 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_33 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_34 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_35 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

250 attribute INIT_36 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_37 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_38 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_39 of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3a of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

255 attribute INIT_3b of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3c of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3d of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

attribute INIT_3e of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...
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";

attribute INIT_3f of cmp_ram_1: label is "...

0000000000000000000000000000000000000000000000000000000000000000...

";

260

--signal p_a_addr : std_logic_vector (8 downto 0);

--signal p_b_addr : std_logic_vector (8 downto 0);

265 signal a_din_1 : std_logic_vector (31 downto 0);

signal b_din_1 : std_logic_vector (31 downto 0);

signal a_dout_1 : std_logic_vector (31 downto 0);

signal b_dout_1 : std_logic_vector (31 downto 0);

signal a_din_2 : std_logic_vector (31 downto 0);

270 signal b_din_2 : std_logic_vector (31 downto 0);

signal a_dout_2 : std_logic_vector (31 downto 0);

signal b_dout_2 : std_logic_vector (31 downto 0);

signal a : std_logic_vector (63 downto 0);

275
signal b_all : std_logic_vector (63 downto 0);

signal b : std_logic_vector (31 downto 0);

signal b_not : std_logic_vector (31 downto 0);

280
begin

-- looploop : FOR i IN 0 TO 15 GENERATE

285 -- b_dout (2*i) <= b_dout_1 (2*i);

-- b_dout (2*i+1) <= b_dout_2 (2*i+1);

--

-- a_din_1 (2*i) <= a_din (2*i);

-- a_din_1 (2*i+1) <= not a_din (2*i);

290 -- a_din_2 (2*i) <= not a_din (2*i+1);

-- a_din_2 (2*i+1) <= a_din (2*i+1);

--

-- END GENERATE;

295

--p_a_addr <= a_addr;

--p_b_addr <= b_addr;

300 cmp_ram_0 : RAMB16_S36_S36

port map (

WEA => a_wr ,

WEB => b_wr ,

ENA => a_en ,

305 ENB => b_en ,

SSRA => a_rst ,

SSRB => b_rst ,
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DIPA => "0000",

DIPB => "0000",

310 DOPA => open ,

DOPB => open ,

CLKA => a_clk ,

CLKB => b_clk ,

DIA => a_din1 (31 downto 0),

315 ADDRA => a_addr ,

DOA => a_dout1 (31 downto 0),

DIB => b_din1 (31 downto 0),

ADDRB => b_addr ,

DOB => b_dout1 (31 downto 0)

320 );

cmp_ram_1 : RAMB16_S36_S36

port map (

WEA => a_wr ,

325 WEB => b_wr ,

ENA => a_en ,

ENB => b_en ,

SSRA => a_rst ,

SSRB => b_rst ,

330 DIPA => "0000",

DIPB => "0000",

DOPA => open ,

DOPB => open ,

CLKA => a_clk ,

335 CLKB => b_clk ,

DIA => a_din2 (31 downto 0),

ADDRA => a_addr ,

DOA => a_dout2 (31 downto 0),

DIB => b_din2 (31 downto 0),

340 ADDRB => b_addr ,

DOB => b_dout2 (31 downto 0)

);

345 end rtl;
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Appendix E. Double RAM

Listing E.1. sc sram32.vhd

--

--

-- This file is a part of JOP , the Java Optimized Processor

--

5 -- Copyright (C) 2001 -2008 , Martin Schoeberl (martin@jopdesign....

com)

--

-- This program is free software: you can redistribute it and/or ...

modify

-- it under the terms of the GNU General Public License as ...

published by

-- the Free Software Foundation , either version 3 of the License ,...

or

10 -- (at your option) any later version.

--

-- This program is distributed in the hope that it will be useful...

,

-- but WITHOUT ANY WARRANTY; without even the implied warranty of

-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 -- GNU General Public License for more details.

--

-- You should have received a copy of the GNU General Public ...

License

-- along with this program. If not , see <http :// www.gnu.org/...

licenses/>.

--

20

--

-- sc_sram32.vhd

--

25 -- SimpCon compliant external memory interface

-- for 32-bit SRAM (e.g. Cyclone board , Spartan -3 Starter Kit...

)

--

-- Connection between mem_sc and the external memory bus

--

30 -- memory mapping

--

-- 000000 - x7ffff external SRAM (w mirror) ...

max. 512 kW (4*4 MBit)

--

-- RAM: 32 bit word

35 --

--

-- 2005 -11 -22 first version

-- 2007 -03 -17 changed SimpCon to records

-- 2008 -05 -29 nwe on pos edge , additional wait state for...

write
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40 --

Library IEEE;

use IEEE.std_logic_1164.all;

use ieee.numeric_std.all;

45
use work.jop_types.all;

use work.sc_pack.all;

entity sc_mem_if is

50 generic (ram_ws : integer; addr_bits : integer);

port (

clk , reset : in std_logic;

55
--

-- SimpCon memory interface

--

sc_mem_out : in sc_out_type;

60 sc_mem_in : out sc_in_type;

-- memory interface

ram_addr : out std_logic_vector(addr_bits -1 downto ...

0);

65 ram_dout : out std_logic_vector (31 downto 0);

ram_din : in std_logic_vector (31 downto 0);

ram_dout_en : out std_logic;

ram_ncs : out std_logic;

ram_noe : out std_logic;

70 ram_nwe : out std_logic

);

end sc_mem_if;

75 architecture rtl of sc_mem_if is

--

-- signals for mem interface

--

80 type state_type is (

idl , rd0a ,...

rd1a , ...

rd2a , ...

rd0b , ...

rd1b , ...

rd2b ,

wr0a , wr1a...

, wr2a ,...

wridl ,...

wr0b , ...
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wr1b , ...

wr2b

);

signal state : state_type;

85 signal next_state : state_type;

signal wait_state : unsigned (4 downto 0);

signal cnt : unsigned (1 downto 0);

90 signal dout_ena : std_logic;

signal rd_data_ena : std_logic;

signal ram_ws_wr : integer;

95 signal ram_addr_intermediate : std_logic_vector(...

addr_bits -2 downto 0);

signal ram_addr_0 : std_logic_vector(addr_bits -1 ...

downto 0);

signal ram_addr_1 : std_logic_vector(addr_bits -1 ...

downto 0);

signal ram_dout_buffer : std_logic_vector (31 downto 0);

100 signal ram_din_buffer : std_logic_vector (31 downto 0);

signal sram_data_in : std_logic_vector (31 downto 0);

signal sram_data_in_0 : std_logic_vector (31 downto 0);

signal sram_data_in_1 : std_logic_vector (31 downto 0);

105 signal sram_data_out : std_logic_vector (31 downto 0);

signal sram_data_out_0 : std_logic_vector (31 downto 0);

signal sram_data_out_1 : std_logic_vector (31 downto 0);

110 begin

ram_ws_wr <= ram_ws +1; -- additional wait state for SRAM

assert SC_ADDR_SIZE >= addr_bits report "Too less address ...

bits";

115 ram_dout_en <= dout_ena;

-- just keep it selected

ram_ncs <= ’0’;

120 sc_mem_in.rdy_cnt <= cnt;

--

-- Register memory address , write data and read data

--

125 process(clk , reset)

begin

if reset=’1’ then
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130 end if;

end process;

--

-- next state logic

135 --

process(state , sc_mem_out.rd , sc_mem_out.wr , wait_state)

begin

140 next_state <= state;

case state is

145 when idl =>

if sc_mem_out.rd=’1’ then

next_state <= rd0a;

elsif sc_mem_out.wr=’1’ then

150 next_state <= wr0a;

end if;

when rd0a =>

155 if wait_state =8 then

next_state <= rd1a;

end if;

when rd1a =>

if wait_state =6 then

160 next_state <= rd2a;

end if;

-- last read state

when rd2a =>

165 if wait_state =5 then

next_state <= rd0b;

end if;

when rd0b =>

if wait_state =4 then

170 next_state <= rd1b;

end if;

when rd1b =>

if wait_state =2 then

next_state <= rd2b;

175 end if;

-- last read state

when rd2b =>

180 next_state <= idl;
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if sc_mem_out.rd=’1’ then

next_state <= rd0a;

elsif sc_mem_out.wr=’1’ then

185 next_state <= wr0a;

end if;

-- the WS state

when wr0a =>

190 if wait_state =13 then

next_state <= wr1a;

end if;

when wr1a =>

if wait_state =10 then

195 next_state <= wr2a;

end if;

-- last write state

when wr2a =>

200 if wait_state =9 then

next_state <= wridl;

end if;

when wridl =>

205 if wait_state =6 then

next_state <= wr0b;

end if;

when wr0b =>

210 if wait_state =5 then

next_state <= wr1b;

end if;

when wr1b =>

if wait_state =2 then

215 next_state <= wr2b;

end if;

-- last write state

when wr2b =>

220 if wait_state =1 then

next_state <= idl;

end if;

end case;

225
end process;

230
--

-- state machine register
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-- output register

--

235 process(clk , reset)

begin

if (reset=’1’) then

state <= idl;

240 dout_ena <= ’0’;

ram_noe <= ’1’;

rd_data_ena <= ’0’;

ram_nwe <= ’1’;

245 --...

-----------------------------------------------------------------------------...

ram_addr_intermediate <= (others => ’0’);

ram_dout <= (others => ’0’);

sc_mem_in.rd_data <= (others => ’0’);

250
elsif rising_edge(clk) then

if sc_mem_out.rd=’1’ or sc_mem_out.wr=’1’ then

ram_addr_intermediate <= sc_mem_out....

address(addr_bits -2 downto 0);

255 end if;

if sc_mem_out.wr=’1’ then

ram_dout_buffer <= sc_mem_out.wr_data;

end if;

if rd_data_ena=’1’ then

260 sc_mem_in.rd_data <= ram_din_buffer;

end if;

--...

--------------------------------------------------------------------------------...

265
state <= next_state;

dout_ena <= ’0’;

ram_noe <= ’1’;

rd_data_ena <= ’0’;

270 ram_nwe <= ’1’;

case next_state is

when idl =>

275
-- the wait state

when rd0a =>

ram_addr <= ram_addr_0;
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280 when rd1a =>

ram_noe <= ’0’;

-- last read state

when rd2a =>

285 sram_data_in_0 <= ram_din;

ram_noe <= ’0’;

-- rd_data_ena <= ’1’;

when rd0b =>

290 ram_addr <= ram_addr_1;

ram_noe <= ’0’;

when rd1b =>

ram_noe <= ’0’;

295
-- last read state

when rd2b =>

sram_data_in_1 <= ram_din;

300 ram_noe <= ’0’;

rd_data_ena <= ’1’;

when wr0a =>

ram_addr <= ram_addr_0;

305 ram_dout <= sram_data_out_0;

when wr1a =>

ram_nwe <= ’0’;

dout_ena <= ’1’;

310
-- last write state

when wr2a =>

dout_ena <= ’1’;

315 when wridl =>

when wr0b =>

ram_addr <= ram_addr_1;

ram_dout <= sram_data_out_1;

320
when wr1b =>

ram_nwe <= ’0’;

dout_ena <= ’1’;

325 -- last write state

when wr2b =>

dout_ena <= ’1’;

end case;

330
end if;
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end process;

335 looploop : FOR i IN 0 TO 15 GENERATE

ram_din_buffer (2*i) <= sram_data_in_0 (2*i)...

;

ram_din_buffer (2*i+1) <= sram_data_in_1 (2*...

i+1);

sram_data_out_0 (2*i) <= ram_dout_buffer (2*...

i);

340 sram_data_out_0 (2*i+1) <= not ...

ram_dout_buffer (2*i);

sram_data_out_1 (2*i) <= not ...

ram_dout_buffer (2*i+1);

sram_data_out_1 (2*i+1) <= ram_dout_buffer...

(2*i+1);

END GENERATE;

345

--sram_data_out_0 <= not ram_dout_buffer;

--sram_data_out_1 <= ram_dout_buffer;

ram_addr_0 <= ’0’& ram_addr_intermediate;

350 ram_addr_1 <= ’1’& ram_addr_intermediate;

--ram_din_buffer <= sram_data_in_1;

355
--

-- wait_state processing

-- cs delay , dout enable

--

360 process(clk , reset)

begin

if (reset=’1’) then

wait_state <= (others => ’1’);

cnt <= "00";

365 elsif rising_edge(clk) then

wait_state <= wait_state -1;

cnt <= "11";

370 if next_state=idl then

cnt <= "00";

-- if wait_state <4 then

elsif wait_state (4 downto 2)="000" then

cnt <= wait_state (1 downto 0) -1;

375 end if;

if sc_mem_out.rd=’1’ then
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wait_state <= to_unsigned(ram_ws+8, 5);

if ram_ws <3 then

380 cnt <= to_unsigned(ram_ws+1, 2);

else

cnt <= "11";

end if;

end if;

385
if sc_mem_out.wr=’1’ then

wait_state <= to_unsigned(ram_ws_wr +11, 5)...

;

if ram_ws_wr <3 then

cnt <= to_unsigned(ram_ws_wr+1, 2)...

;

390 else

cnt <= "11";

end if;

end if;

395 end if;

end process;

end rtl;
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